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University of Cambridge 

 

Algebra 

Commutative Algebra (M24) 

C.J.B. Brookes 

The aim of the course is to give an 

introduction to the theory of commutative 

Noetherian rings and modules, a theory that 

is an essential ingredient in algebraic 

geometry, algebraic number theory and 

representation theory. 

 

Topics I hope to _t in will be the theory of 

ideals for Noetherian and Artinian rings; 

localisations and completions; integral 

closure, valuation rings and Dedekind rings; 

dimension theory; di_erential operators 

Pre-requisites 

It will be assumed that you have attended a 

_rst course on ring theory, eg IB Groups, 

Rings and Modules. 

Experience of other algebraic courses such as 

II Representation Theory, Galois Theory or 

Number Fields 

will be helpful but not necessary. 

 

 

 

 

Literature 
1. M.F. Atiyah and I.G. Macdonald, 

Introduction to commutative algebra, 

Addison-Wesley, 1969. 

2. N. Bourbaki, Commutative algebra, 

Elements of Mathematics, Springer, 1989 . 

3. I. Kaplanksy, Commutative rings, 

University of Chicago Press, 1974. 

4. H. Matsumura, Commutative ring theory, 

Cambridge Studies 8, Cambridge University 

Press, 1989. 

5. M.Reid, Undergraduate Commutative 

Algebra, LMS student texts 29, Cambridge 

University Press, 

1995. 

6. R.Y. Sharp, Steps in commutative algebra, 

LMS Student Texts 19, Cambridge 

University Press, 

1990. 

The basic text is Atiyah and Macdonald but it 

doesn't go into much detail and many results 

are left 

to the exercises. Sharp _lls in some of the 

detail but neither book goes far enough. Both 

Kaplanksy 



 

 

and Matsumura cover the additional material 

though Matsumura is a bit tough as an 

introduction. 

Reid's book is a companion to one on 

algebraic geometry and that inuences his 

choice of topics 

and examples. Bourbaki is encyclopaedic. 

Additional support 

Four examples sheets will be provided, with 

supporting examples classes. 

Lie Algebras and Their Representations 

(M24) 

David Stewart 

Lie algebras were introduced by Sophus Lie 

as a way to study what we now call Lie 

Groups. The latter 

can be thought of as smooth groups. Then Lie 

algebras arise by looking at in_nitesimal 

transformations, 

speci_cally, the tangent space at the identity. 

We'll go through these concepts in some 

detail, but actually 

the de_nition of a Lie algebra (which will be 

given in approximately three lines) is simply 

a vector space 

with a certain anticommutative multiplication 

which satis_es some version of associativity. 

So for the most 

part, all the geometry of the Lie group can be 

exorcised and we can get down to the 

algebraic arguments 
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which will give us a complete picture of the 

_nite-dimensional complex representations of 

_nite-dimensional 

semisimple Lie algebras. But we'll do more 

than that, giving a classi_cation of the 

complex simple Lie 

algebras by root data, covering all the 

structure theory necessary to get us there. 

Lie theory comes in many avours and is 

important in _nite group theory (with 26 

exceptions all nonabelian 

_nite simple groups come from Lie theoretic 

objects), number theory (notably the 

Langlands programme), 

physics (e.g. quantum), di_erential equations, 

integrable systems . . . Underpinning all Lie 

theoretical 

objects are root systems. In some way this 

course can be seen as an introduction to those 

most fundamental 

of mathematical objects, as motivated by Lie 

algebras. 

Desirable Previous Knowledge 

You need to be happy with the notion of a 

vector space but that's more-or-less it. I'm 

planning to illustrate 

many of the theorems by showing how they 

go wrong over _elds of positive 

characteristic, so a basic 

familiarity with the existence of such _elds 

would be good. Having taken some course on 

representation 

theory in the past would be a plus, only so 

that terms like `completely reducible' are 

familiar. 

Reading to complement course material 

1. Representation theory, Fulton and Harris. 

Springer. This is a beautiful book written in a 

fun, chatty 

style with plenty of examples, motivation, 

and pictures. It tells a good story. It is the 

main source of 

the lecture notes and would be a great 

complement to the course. It also has stu_ on 

representations 

of the symmetric groups. If you are thinking 

of staying on in algebra, it would be a great 

purchase. 

2. Introduction to Lie algebras. Erdmann and 

Wilson. Springer. Very accessible. Every `i' 

dotted and 

`t' crossed. 

3. Introduction to Lie algebras and 

representation theory. Humphreys. Springer. 

A good book, taking 

a more algebraic approach. 



 

 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. 

Representation Theory (L24) 

Stuart Martin 

The representation theory of the symmetric 

group Sn is a classical subject that, from the 

foundational 

work of Frobenius, Schur and Young, has 

developed into a richly diverse area, with 

important connections 

across algebra, computer science, statistical 

mechanics and theoretical physics. 

This course is essentially an introduction to 

the algebraic combinatorics that underpins 

the representation 

theory of Sn. I hope to cover a selection of 

classical topics such as Specht modules, 

Young symmetrizers, 

Young tableaux, the branching rule, Schur 

functions, the Robinson-Schensted-Knuth 

correspondence, 

the Jacobi-Trudi identity, the hook-length 

formula, the Littlewood -Richardson rule, the 

Murnaghan- 

Nakayama rule, Sch • utzenberger's 

involution and jeu de taquin, etc. I also give 

an account of a new approach 

to computing the complex _nite-dimensional 

irreducible representations of Sn, developed 

by Anatoly 

Vershik and Andrei Okounkov (see the book 

[1] below). The main tool here is the so-

called Gelfand- 

Tsetlin (GZ) algebra, which is a certain 

commutative subalgebra of CSn. If time 

allows, some of the 

following more recent topics will be 

included: Hecke algebras, partition algebras, 

(Young-)Jucys-Murphy 

elements (as generators of the GZ-algebra), 

Schur positivity, Macdonald polynomials, 

non-commutative 

symmetric functions. 

_ Representations of Sn. The Young diagram, 

Young tableaux and Young poset. 

_ Review of classical theory: Schur's lemma 

and its corollaries. Characters. Conjugacy 

classes. Orthogonality 

of characters. Wiring diagrams and Coxeter 

relations. 
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_ The Okounkov-Vershik construction. 

Branching graph and Gelfand-Tsetlin bases. 

Centre of the 

group algebra. Jucys-Murphy elements. JM 

elements saitisfy generic Hecke algebra 

relations. Hooklength 

formula and hook-walks. 

_ Schur functions via semistandard Young 

tableaux (SSYT). Cauchy identity. Robinson-

Schensted- 

Knuth (RSK) correspondence. Fomin's 

growth diagrams. Gelfand-Tsetlin patterns. q-

binomials. 

_ The ring of symmetric functions and its 

various bases. Lindstrom's lemma and 

Jacobi-Trudi identity. 

The classical de_nition of Schur polynomials. 

The determinantal formula for the number of 

SSYTs. 

_ (If time) q-analogue of the determinantal 

formula and of the hook-length formula. 

Reverse plane 

partitions. Hillman-Grassl correspondence. 

_ (If time) Plane partitions, non-crossing 

paths, rhombus tilings, perfect matchings, 

and pseudoline 

arrangements. Viennot's shadow construction 

for RSK. 

_ Green's theorem. P-equivalence and 

Knuth's equivalence. Sch • utzenberger's jeu 

de taquin. The 

Littlewood-Richardson rule and its variants. 

_ The Murnaghan-Nakayama rule. The 

Frobenius characteristic map. The characters 

of the symmetric 

group. 

Pre-requisites 



 

 

Prerequisites are minimal. Undergraduate 

representation theory (semisimplicity of the 

complex group 

algebra, completeness of characters over C), 

permutation representations. Group theory 

(symmetric 

groups and general linear groups and their 

conjugacy classes). 

Preliminary Reading 

1. T. Ceccherini-Silberstein, F. Scarabotti and 

F. Tolli, Representation theory of the 

symmetric groups: 

the Okounkov-Vershik approach, character 

formulas and partition algebras, CUP 2010. 

2. W. Fulton, Young tableaux, Cambridge 

University Press, 1997. 

3. W. Fulton and J. Harris, Representation 

theory, a _rst course, GTM 129, Springer, 

1991. 

4. G.D. James, The Representation Theory of 

the Symmetric Group, LNM 682, Springer 

1978. 

5. B.E. Sagan, The Symmetric Group: 

representations, combinatorial algorithms and 

symmetric functions 

(2nd edn), GTM 203, Springer 2001. 

6. R.P. Stanley, Enumerative Combinatorics, 

Volume 2 (Chapter 7), CUP 2001. 

 

Literature 
1. A. Garsia, Young's seminormal 

representation, Murphy elements and content 

evaluations, 2003. (See 

Garsia's UCSD webpage) 

2. A. Garsia, Alfred Young's construction of 

the irreducible representations of Sn, 2014. 

Available 

online. 

3. A. Lascoux. Young's representations of the 

symmetric group. Available online at http:// 

phalanstere.univmlv. 

fr/_ al/ARTICLES/ProcCrac.ps.gz 

4. A.M. Vershik and A. Okounkov, A new 

approach to the representation theory of the 

symmetric 

groups, II (in Russian), Selecta Math. (N.S.) 

2, No 4, 581{605 (1996). Revised English 

version 

appears at 

http://arxiv.org/pdf/math/0503040v3.pdf 

5. P. Py, On representation theory of the 

symmetric groups, J. Math. Sci. (N.Y.) 129 

(2005), no 2 

3806{3813. 

6. A Young, The Collected Papers of Alfred 

Young, Math. Expositions No. 21 Univ. of 

Toronto. 

Toronto Press (1873{1940). 
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Additional support 

Two sheets of examples will be provided 

backed up by two or three classes. 

In_nite Groups and Decision Problems (L16) 

Jack Button and Maurice Chiodo 

Overview 

The aim of this course is to investigate the 

theory of in_nite groups. We will discuss 

ways of de_ning an 

in_nite group via a _nite description, and 

look at various classical constructions of 

these. We will then 

turn our attention to incomputability in group 

theory, giving several problems which are 

algorithmically 

incomputable in these _nite descriptions of 

in_nite groups. 

Course description 

In_nite groups (8 lectures with Jack Button): 

Review of basic de_nitions and results. Free 

groups and 

normal forms; free products. Nielsen-

Schreier theorem and index formula. Group 

(and semigroup) presentations. 

Amalgamated free products and HNN 

extensions, normal and/or reduced forms, 

Britton's 

lemma and applications. Subgroups of _nite 

index; Higman's group. 



 

 

Decision problems (8 lectures with Maurice 

Chiodo): Turing machines, recursive and 

recursively enumerable 

sets, the halting set K. Recursive 

presentations of groups, the word and 

isomorphism problems with 

basic properties and examples. Post's 

construction of a _nitely presented semigroup 

with unsolvable word 

problem. Modular machines and their 

equivalence to Turing machines. A _nitely 

presented group with unsolvable 

word problem. Higman's embedding 

theorem. The Adian-Rabin construction, 

unrecognisability 

of Markov properties, a universal _nitely 

presented group. 

Pre-requisites 

It will be assumed that you have attended a 

_rst course in group theory. Some experience 

with algebraic 

topology (fundamental group, covering 

spaces), would be useful; the required 

background can instead be 

found in the preliminary reading listed below. 

In addition, Part III Computability Theory 

(Michaelmas) 

would be helpful, but is not essential. 

Preliminary Reading 

Any introductory text in group theory, of 

which there are plenty. The necessary 

algebraic topology can 

certainly be found in either of: 

1. J. M. Lee, Introduction to Topological 

Manifolds. (GTM 202), Springer-Verlag, 

second edition, 2011: 

Chapters 7, 10, 11, 12. 

2. A. Hatcher, Algebraic topology. 

Cambridge University Press, 2001: Chapter 0 

and Sections 1.1, 1.2, 

1.3, 1.A. Also available at 

http://www.math.cornell.edu/~hatcher/AT/A

Tpage.html 

 

 

Literature 
1. R. Lyndon and P. Schupp,Combinatorial 

Group Theory. Springer-Verlag, 2001: 

Sections I.1, II.1, 

II.2, IV.1, IV.2. 

2. D. E. Cohen,Combinatorial Group Theory: 

A Topological Approach. London 

Mathematical Society 

Student Texts, Cambridge University Press, 

1989: Sections 9.1{9.6. 
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3. C. F. Miller III, Decision Problems For 

Groups-Survey and Reections. Algorithms 

and classi_cation 

in combinatorial group theory (Berkeley, CA, 

1989), Math. Sci. Res. Inst. Publ., 23, 

Springer, 

New York, 1{59 (1992): Section 3. Also 

available at 

http://www.ms.unimelb.edu.au/~cfm/papers/

paperpdfs/msri_survey.all.pdf 

4. J. Rotman, An Introduction To The Theory 

Of Groups. (GTM 148), Springer, fourth 

edition, 1995: 

p.404{430. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 
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Analysis 

Analysis of Partial Di_erential Equations 

(M24) 

David Stuart 

The purpose of this course is to introduce 

some techniques and methodologies which 

are used in the 

mathematical treatment of Partial Di_erential 

Equations (PDE). The theory of PDE is 

nowadays a huge 

area of active research, and it goes back to 

the very birth of mathematical analysis in the 

18th and 19th 



 

 

century. It lies at a crossroads with physics 

and many areas of pure and applied 

mathematics. 

The course begins with an introduction to 

four prototype linear equations: Laplace's 

equation, the heat 

equation, the wave equation and 

Schr• odinger's equation. Emphasis will be 

given to the modern functional 

analytic techniques, relying on the notion of 

Cauchy problem and estimates, rather than 

explicit 

solutions, although the interaction with 

classical methods (such as the fundamental 

solution and Fourier 

representation) will be discussed. The 

following basic unifying concepts will be 

studied: well-posedness, 

energy estimates, elliptic regularity, 

characteristics, propagation of singularities, 

group velocity, and the 

maximum principle. The course will end with 

a discussion of some of the open problems in 

PDE. 

Pre-requisites 

There are no speci_c pre-requisites beyond a 

standard undergraduate analysis background, 

in particular a 

familiarity with measure theory and 

integration. The course will be mostly self-

contained and can be used 

as a _rst introductory course in PDE for 

students wishing to continue with some 

specialised PDE Part III 

courses in the lent and easter terms. In 

particular, having attended the 2014 course 

\Partial di_erential 

equations" in Part II is not a pre-requisite. 

Preliminary Reading 

The following article gives an overview of 

the _eld of PDE: 

1. Klainerman, S., Partial Di_erential 

Equations, Princeton Companion to 

Mathematics (editor T. 

Gowers), Princeton University Press, 2008. 

Literature 
1. Some lecture notes are available online at: 

http://cmouhot.wordpress.com/teachings/. 

The following textbooks are excellent 

references: 

2. Evans, L. C., Partial Di_erential Equations, 

Springer, 2010. 

3. Brezis, H., Functional Analysis, Sobolev 

Spaces and Partial Di_erential Equations, 

Springer, 2010. 

4. John, F., Partial Di_erential Equations, 

Springer, 1991. 

Additional Information 

This course is also intended for doctoral 

students of the Centre for Analysis (CCA), 

who will also be 

involved in additional assigments, 

presentations and group work. Part III 

students do not do these, and 

they will be assessed in the usual way by 

exam at the end of the academic year. Four 

examples sheets will 

be provided and four associated examples 

classes will be given. There will be a one-

hour revision class in 

the Easter Term. There will be one o_ce hour 

a week. 
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Functional Analysis (M24) 

Andr_as Zs_ak 

This course covers many of the major 

theorems of abstract Functional Analysis. It 

is intended to provide 

a foundation for several areas of pure and 

applied mathematics. We will cover the 

following topics: 

Hahn{Banach Theorem on the extension of 

linear functionals. Locally convex spaces. 

Duals of the spaces Lp(_) and C(K). The 

Radon{Nikodym Theorem and the Riesz 

Representation 

Theorem. 

Weak and weak-* topologies. Theorems of 

Mazur, Goldstine, Banach{Alaoglu. 

Reexivity and local 



 

 

reexivity. 

Hahn{Banach Theorem on separation of 

convex sets. Extreme points and the 

Krein{Milman theorem. 

Partial converse and the Banach{Stone 

Theorem. 

Banach algebras, elementary spectral theory. 

Commutative Banach algebras and the 

Gelfand representation 

theorem. Holomorphic functional calculus. 

Hilbert space operators, C_-algebras. The 

Gelfand{Naimark theorem. Spectral theorem 

for commutative 

C_-algebras. Spectral theorem and Borel 

functional calculus for normal operators. 

Some additional topics time permitting. For 

example, the Fr_echet{Kolmogorov 

Theorem, weakly compact 

subsets of L1(_), the Eberlein{_Smulian and 

the Krein{_Smulian theorems, the 

Gelfand{Naimark{Segal 

construction. 

Pre-requisites 

Thorough grounding in basic topology and 

analysis. Some knowledge of basic functional 

analysis and 

basic measure theory (much of which will be 

recalled either in lectures or via handouts). In 

Spectral 

Theory we will make use of basic complex 

analysis. For example, Cauchy's Theorem, 

Cauchy's Integral 

Formula and the Maximum Modulus 

Principle. 

 

Literature 
1. Allan, Graham R. Introduction to Banach 

spaces and algebras (prepared for publication 

by H. Garth 

Dales). Oxford University Press, 2011. 

2. Bollob_as, B_ela Linear analysis: an 

introductory course. Cambridge University 

Press, 1990. 

3. Rudin, Walter Real & Complex Analysis. 

McGraw-Hill, 1987. 

4. Rudin, Walter Functional Analysis. 

McGraw-Hill, 1990. 

5. Taylor, S. J. Introduction to measure and 

integration. Cambridge University Press 

1973. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

There will be some material as well as 

examples sheets and 

announcements available at 

www.dpmms.cam.ac.uk/~az10000/ 

Elliptic Partial Di_erential Equations (L24) 

Costante Bellettini and Otis Chodosh 

This course is intended as an introduction to 

the theory of elliptic partial di_erential 

equations. Elliptic 

equations play an important role in geometric 

analysis and a strong background in linear 

elliptic equations 

provides a foundation for understanding other 

topics including minimal submanifolds, 

harmonic maps, and 
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general relativity. We will discuss both 

classical and weak solutions to elliptic 

equations, considering when 

solutions to the Dirichlet problem exist and 

are unique and considering the regularity of 

solutions. This 

involves establishing maximum principles, 

Schauder estimates, and other estimates on 

solutions. As time 

permits, we will discuss other topics 

including the De Giorgi-Nash theory, which 

can be used to prove the 

Harnack inequality and establish H • older 

continuity for weak solutions, and quasilinear 

elliptic equations. 

Pre-requisites 

Lebesgue integration, Lebesgue spaces, 

Sobolev spaces, and basic functional 

analysis. 



 

 

Literature 
1. David Gilbarg and Neil S. Trudinger, 

Elliptic Partial Di_erential Equations of 

Second Order. 

Springer-Verlag (1983). 

2. Lawrence Evans, Partial Di_erential 

Equations. AMS (1998) 

3. Qing Han and Fanghua Lin, Elliptic partial 

di_erential equations. Courant Lecture Notes, 

Vol. 1 

(2011). 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 

Topics in Ergodic Theory (L24) 

P_eter Varj_u 

Ergodic theory studies dynamical systems 

that are endowed with an invariant measure. 

There are many 

examples of such systems that originate from 

other branches of mathematics. This led to a 

fruitful 

interplay between ergodic theory and other 

_elds. 

I will explain some basic elements of ergodic 

theory, such as recurrence, ergodic theorems 

and mixing 

properties. I will also talk about some 

applications of the theory, such as 

Furstenberg's proof of Szemer_edi's 

theorem, continued fractions and Weyl's 

equidistribution theorem for polynomials. 

Pre-requisites 

Measure theory, point-set topology and basic 

functional analysis. 

 

Literature 
Einsiedler, Ward, Ergodic Theory with a 

view towards Number Theory, Springer, 

2011. 

Nonlinear Wave Equations (L24) 

Non-Examinable (Part III Level) 

Jonathan Luk 

We will discuss the local and global theories 

for quasilinear wave equations and their 

applications to 

physical theories including uid mechanics 

and general relativity. The following topics 

will be covered: 
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1. Quantitative behaviour of solutions to the 

linear wave equation in Minkowski 

spacetime 

2. Energy methods and the local theory for 

quasilinear wave equations 

3. Application in general relativity: local 

well-posedness of the Einstein equations 

4. Examples of subcritical nonlinear wave 

equations 

5. Small data global theory in higher 

dimensions 

6. The null condition and the small-data 

global theory in three dimensions 

7. The weak null condition 

8. Further applications 

Pre-requisites 

Some exposure to partial di_erential 

equations, Fourier analysis and di_erential 

geometry will be useful 

but we will develop most of the necessary 

tools within the course. 

 

Literature 
We will not follow any speci_c texts but 

students may _nd the  

 

Literature listed below useful: 

1. H. Ringstr • om, Non-linear wave 

equations, available at 

http://www.math.kth.se/~hansr/nlw.pdf 

2. C. Sogge, Lectures in nonlinear wave 

equations 2nd edition. International Press, 

2011. 

3. S. Klainerman, Lecture notes in analysis, 

available at 

https://web.math.princeton.edu/~seri/homepa

ge/courses/Analysis2011.pdf 

Lectures notes will also be provided online. 



 

 

Additional support 

Examples sheets will be provided and 

example classes will be given. 

Optimal Transportation (L24) 

Non-Examinable (Graduate Level) 

Dr Garling 

The problem of optimal transportation 

(moving material distributed as a measure _ 

to a site with distribution 

_, at minimal cost) was introduced by 

Gaspard Monge in 1781. Major advances 

were made by 

Leonid Kantorovich in the 1940s, for which 

he won the Nobel Prize for Economics in 

1975. In recent years 

there have been further major developments 

and applications, leading to a Fields Medal 

for C_edric Villani 

in 2010. This course will develop the 

fundamental theory, and the analysis needed 

for it. 

Topics include: 

Polish spaces, measures on them and the 

convergence of measures. 

Convex sets and functions, Legendre 

transforms and related ideas. 

Extreme points and Choquet theory. 

Optimal transportation and Wasserstein 

metrics. 
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Pre-requisites 

Some linear analysis, including the Hahn-

Banach theorem. 

Measure theory, to the level of the Part II 

course. 

Preliminary Reading 

The introduction to [1], Chapter 3 of [2] and 

the Preface and Introduction of [3] each give 

a good idea of 

what it is all about. 

 

Literature 
1. Gangbo, W. and McCann, R.J. The 

geometry of optimal transportation, Acta 

Math., 177, 113-161 

(1995). Also available at 

//http://people.math.gatech.edu/ 

gangbo/publications/geo.pdf 

2. Villani, C., Topics in optimal 

transportation. AMS, 2003. 

3. Villani, C., Optimal transport old and new. 

Springer, 2009. 

Function Spaces (L24) 

Non-Examinable (Graduate Level) 

Sophia Demoulini 

Review (as necessary, including Measure 

Theory and Lebesgue spaces, Riesz 

representations on spaces of 

continuous functions, Egorov, Lusin BV 

spaces in 1 dim) 

Hardy-Littlewood Principle Calderon-

Zygmund decomposition Weak and Strong 

(p,q) operators Covering 

Theorems (Vitali, Besicovich) Absolute 

Continuity Di_erentiation Hahn and 

Lebesgue Decomposition 

(Possibly: Introduction to Fractional Integral 

Operators) Hardy-Littlewood-Sobolev 

theorem) 

Sobolev Spaces Hausdor_ Measure - 

Isodiametric inequality Capacity Area and 

Coarea formulae Trace 

Capacity Space of functions of Bounded 

Variation in n-dimensions Coarea for BV 

Reduced boundary and 

Gauss-Green Theorem for BV 

Pre-requisites 

Measure theory, Lebesgue Integration, as in 

Probability and Measure, Part II Basic 

Functional Analysis 

(Hahn-Banach Theorem, Banach spaces) 

 

Literature 
1. Evans and Gariepy Measure theory and 

Fine Properties of Functions CRC Press 

1992. 

2. Lecture Notes by James Kilbane 

https://www.dpmms.cam.ac.uk/ jk511/ Also 

available at 

https://www.dpmms.cam.ac.uk/~jk511/ 
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Topics in Geometric Analysis (L16) 

Non-Examinable (Graduate Level) 

Neshan Wickramasekera 

The course will aim to cover some basic 

principles in modern geometric analysis, 

taking as examples 

the variational theories of minimal 

submanifolds and harmonic maps. Topics to 

be discussed (some 

lightly): existence results including the 

classical Plateau problem, monotonicity 

formulae, _-regularity 

and compactness theories, tangent cones and 

the question of their uniqueness, size and 

strati_cation of 

singular sets, and regularity of singular sets. 

Pre-requisites 

Some familiarity with geometry of 

submanifolds of Euclidean spaces, recti_able 

sets, measure theory 

including Hausdor_ measure, and the theory 

of second order quasilinear ellipitic PDEs 

will be very helpful. 

 

Literature 
1. D. Gilbarg & N. Trudinger, Elliptic partial 

di_erential equations of second order. 

2. L. Simon, 

Lectures on Geometric Measure Theory. 

3. L. Simon, 

Theorems on regularity and singularity of 

energy minimizing maps. 

4. M. Struwe, 

Plateau's problem and the calculus of 

variations. 

5. N. Wickramsekera, 

Regularity of stable minimal hypersurfaces: 

recent advances in the theory and 

applications. Surveys 

in Di_. Geom, Vol 19 (2014), pp. 231{301. 

available at: 

http://intlpress.com/site/pub/pages/journals/it

ems/sdg/content/vols/0019/0001/ 

index.html 

Advanced Topics in Many-Particle Systems 

(E16) 

Non-Examinable (Graduate Level) 

Cl_ement Mouhot 

This non-examinable course will present 

some mathematical tools and concepts for the 

rigorous derivation 

and study of nonlinear partial di_erential 

equations arising from many-particle limits: 

Vlasov transport 

equations, Boltzmann collision equations, 

nonlinear di_usion, quantum Hartree 

equations. . . Depending on 

time and interest it could include: notions of 

master equation and empirical measures, 

stability estimate 

in optimal transport distance, coupling 

method, chaos and entropic chaos, 

hydrodynamic limit of lattice 

systems. 

Pre-requisites 

Basics in functional analysis, partial 

di_erential equations and probability. 
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Literature 
1. H. Spohn Large Scale Dynamics of 

Interacting Particles. Springer 1991. 

2. C. Kipnis & C. Landim Scaling Limits of 

Interacting Particle Systems. Springer 1999. 

3. F. Golse The Mean-Field Limit for the 

Dynamics of Large Particle Systems, 

Journe_ees _Equations 

aux d_eriv_ees partielles Forges-les-Eaux, 2-

6 juin 2003. 

4. F. Bolley Optimal coupling for mean _eld 

limits, arXiv:10093855. 

5. S. Mischler & C. Mouhot Kac's program in 

kinetic theory, Inventiones mathematicae 

2013, vol 193, 

pp 1-147. 

6. P.-E. Jabin A review of the mean _eld 

limits for Vlasov equations, Kinetic and 

Related Models 2014, 

vol 7, pp 661 - 711. 
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Combinatorics 

Combinatorics (M16) 

Prof I.B.Leader 

The avour of the course is similar to that of 

the Part II Graph Theory course, although we 

shall not rely 

on many of the results from that course. 

We shall study collections of subsets of a 

_nite set, with special emphasis on size, 

intersection and containment. 

There are many very natural and fundamental 

questions to ask about families of subsets; 

although 

many of these remain unsolved, several have 

been answered using a great variety of 

elegant techniques. 

We shall cover a number of `classical' 

extremal theorems, such as those of Erd}os-

Ko-Rado and Kruskal- 

Katona, together with more recent results 

concerning isoperimetric inequalities and 

intersecting families. 

The aim of the course is to give an 

introduction to a very active area of 

mathematics. 

We hope to cover the following material. 

Set Systems 

De_nitions. Antichains; Sperner's lemma and 

related results. Shadows. Compression 

operators and the 

Kruskal-Katona theorem. Intersecting 

families; the Erd}os-Ko-Rado theorem. 

Isoperimetric Inequalities 

Harper's theorem and the edge-isoperimetric 

inequality in the cube. Inequalities in the 

grid. The classical 

isoperimetric inequality on the sphere. The 

`concentration of measure' phenomenon. 

Applications. 

Intersecting Families 

Katona's t-intersecting theorem. The 

Ahlswede-Khachatrian theorem. Restricted 

intersections. The 

Kahn-Kalai counterexample to Borsuk's 

conjecture. 

Desirable Previous Knowledge 

The only prerequisites are the very basic 

concepts of graph theory. 

Introductory Reading 

1. Bollob_as, B., Combinatorics, C.U.P. 

1986. 

Extremal Graph Theory (M16) 

Andrew Thomason 

Extremal graph theory is, broadly speaking, 

the study of graph properties and their 

dependence on the 

values of graph parameters. The simplest 

example is the well-known theorem of 

Tur_an. We develop the 

basic theory for graphs, and extend to 

hypergraphs. The recent idea of hypergraph 

containers shows how 

hypergraph tools can give new information 

even for graphs. The following material is 

expected to be in 

the course, with further topics being explored 

if time permits. 

The Erd}os-Stone theorem and stability. 

Szemer_edi's Regularity Lemma, with 

applications. 

Hypergraphs. Erd}os's r-partite theorem. 

Instability. The theorem of de Caen. 

Containers for regular and irregular graphs. 

Hypergraph containers. The number of H-

free and induded 

H-free graphs. Further applications. 
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Pre-requisites 

A knowledge of the basic concepts, 

techniques and results of graph theory, such 

as that a_orded by the 

Part II Graph Theory course. 

 

Literature 
No book covers the course but the following 

can be helpful. 



 

 

1. B. Bollob_as, Modern graph theory, 

Graduate Texts in Mathematics 184, 

Springer-Verlag, New York 

(1998), xiv+394 pp. 

2. N. Alon and J. Spencer, The Probabilistic 

Method, Wiley, 3rd ed. (2008) 

Additional support 

Three examples classes will be o_ered, based 

on examples sheets. Moreover there will be a 

revision class 

during the Easter Term. 

Techniques in Non-Abelian Additive 

Combinatorics (L16) 

W. T. Gowers 

This course will be an introduction to some 

(but by no means all) of the central ideas of 

additive combinatorics. 

It will begin by showing how discrete Fourier 

analysis on the cyclic group ZN can be used 

to 

prove interesting theorems in combinatorial 

number theory, but the main emphasis will be 

on generalizing 

these techniques to arbitrary _nite Abelian 

and then non-Abelian groups. While the 

course will contain 

some interesting theorems, its main aim is to 

teach the methods of proof, which make it 

possible to solve 

problems that would otherwise be out of 

reach. 

I hope to include all of the following, but 

may have to leave out certain topics if I run 

out of time. 

Approximate numbers of lectures are given 

in brackets (but these are guesses and may 

turn out to be 

overoptimistic). 

Discrete Fourier analysis in _nite Abelian 

groups. Roth's theorem. Bogolyubov's 

method. [3] 

Matrices, box norms, singular values, 

quasirandom regular bipartite graphs. [3] 

Review of basic results of representation 

theory. [1] 

Discrete Fourier analysis in general _nite 

groups. Quasirandom groups. Bounds for the 

sizes of productfree 

sets. [3] 

Use of arithmetic geometry. The Schwartz-

Zippel lemma. Dvir's theorem. The Lang-

Weil theorem 

(statement only). Interleaved products in 

SL(2; q). [3] 

Fourier analysis for matrix-valued functions 

on general _nite groups. The stability of near-

representations. 

[3] 

Pre-requisites 

You should be comfortable with the 

terminology of graph theory (for example, 

knowing what a bipartite 

graph is). You should know enough linear 

algebra to understand the statement that a 

Hermitian matrix 

has an orthonormal basis of eigenvectors 

with real eigenvalues. A familiarity with the 

basic ideas of 

representation theory, such as the de_nition 

of an irreducible representation and Schur's 

theorem, would 

be helpful, but I shall include a quick review 

of the concepts I need. 
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Literature 
There is no obvious book for this course. The 

book Additive Combinatorics, by Terence 

Tao and Van Vu, 

is a very comprehensive introduction to 

additive combinatorics and would 

complement the course well, 

but its overlap with the material above is 

rather slight. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 



 

 

Probabilistic Combinatorics and Its 

Applications (L16) 

B_ela Bollob_as 

For the past _fty years or so, probability 

theory has been strongly inuenced by 

combinatorics: a great 

variety of results in probability theory have 

been inspired by combinatorial problems. In 

this course we 

shall present some of these results, together 

with a number of applications. 

The topics to be covered are likely to include 

the following. 

Correlation inequalities, including those of 

Harris, van den Berg and Kesten, and the 

Four Functions 

Inequality. 

Isoperimetric inequalities, with emphasis on 

the (high-dimensional discrete) cube and 

grid. 

Talagrand's inequalities. 

Entropy (Shannon and von Neumann); 

inequalities of Shearer and Balister and 

Bollob_as. 

Concentration of probability, including the 

Azuma{Hoe_ding Inequality, the inequalities 

of Freedman and 

McDiarmid, and transportation inequalities. 

The inuence of a random variable: Fourier 

analytic methods and the KKL (Kahn, Kalai, 

Linial) Inequality. 

As applications, I shall prove some basic 

results about the chromatic number of 

random graphs, the 

travelling salesman problem, percolation 

theory, and monotone cellular automata, and 

hope to present 

some very recent results of Balogh, Morris 

and others. 

Almost all the material in the course will be 

self-contained, although I may use one or two 

results from 

the other combinatorics courses, for example 

the container theorem of Balogh, Morris and 

Samotij, and 

Saxton and Thomason. 

Much of the material will be based on 

research papers, some of which are very 

recent, but the more 

standard parts will be supported by printed 

notes. 

The Upper Tail and Concentration in 

Combinatorics (L16) 

Non-Examinable (Graduate Level) 

Paul Smith 

If X is a sum of n indicator random variables, 

how close is X typically to its mean? If the 

indicator 

random variables are independent, then the 

answer is that X is typically very close to its 

mean: with 

high probability, X is contained in an interval 

of length O(pn). Moreover, the probability 

that X lies 
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outside the interval is exponentially small. 

This result, known as Cherno_'s inequality, is 

an example of 

a phenomenon known as concentration of 

measure. 

We are not usually so lucky as to have 

independent random variables, but the 

concentration of measure 

phenomenon often still holds if the random 

variables are only `su_ciently close' to being 

independent. 

The aim of this course is to present a toolbox 

of techniques for proving such concentration 

results, with 

a focus on upper tail inequalities, which are 

bounds on the probability a random variable 

is much larger 

than its mean. The techniques will be 

illustrated with applications to variety of 

problems in probabilistic 

combinatorics, random graphs, and discrete 

probability. 

The topics covered will include some of the 

following: sums of independent random 

variables and Cherno_'s 



 

 

inequalities; generalization to martingales: 

Azuma{Hoe_ding, Talagrand, Freedman; 

further upper tail 

inequalities: Kim{Vu, Lipschitz-type 

methods, the deletion method and other 

combinatorial methods; 

Janson's inequality; Stein{Chen Poisson 

approximation; examples of non-

concentration and scaling limits. 

Pre-requisites 

You should be familiar with elementary 

graph theory and probability. Knowledge of 

discrete time martingales 

will be useful, but these will be treated 

informally and a quick recap will be given at 

the start of 

the course. The course will complement, but 

not overlap, the course on Random Graphs 

and Percolation 

given by Professor Bollob_as. 

 

Literature 
There is no single book or paper containing 

all of what we hope to cover, but the union of 

the following 

three comes close. The beautiful book by 

Alon and Spencer is the classic introduction 

to the subject. 

1. N. Alon and J. Spencer, The Probabilistic 

Method, third ed., Wiley, 2008. 

2. B. Bollob_as, Random Graphs, second ed., 

Cambridge, 2001. 

3. S. Janson and A. Ruci_nski, The infamous 

upper tail, Random Structures Algorithms 20 

(2002), 

no. 3, 317{342. 

Topics in Ramsey Theory (L16) 

Non-Examinable (Graduate Level) 

B. P. Narayanan 

Ramsey theory is concerned with the general 

question of whether, in a large amount of 

disorder, one 

can _nd regions of order. A typical example 

is van der Waerden's theorem, which states 

that whenever 

we partition the natural numbers into _nitely 

many classes there is a class that contains 

arbitrarily long 

arithmetic progressions. 

The avour of the course is combinatorial. 

Ramsey theory is remarkably attractive: we 

study questions 

that are very natural and easy to appreciate, 

but whose answers rely on a great variety of 

beautiful 

methods. 

The _rst half of this course will be an 

introduction to Ramsey theory and will cover 

some of the classical 

results in the area such as Ramsey's theorem, 

the Canonical Ramsey theorems, van 

derWaerden's theorem 

and the Hales{Jewett theorem. 

The second half of the course will focus on 

more recent developments. Some of the 

topics I hope to 

cover include recent work in geometric 

Ramsey theory, the properties of non-

Ramsey graphs, and _nally, 

connections to the theory of ultra_lters and 

ergodic-theory. 
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Pre-requisites 

There are almost no prerequisites; the course 

will start with a review of Ramsey's theorem, 

so even prior 

knowledge of this is not essential. However, 

students familiar with the material from a _rst 

course in 

graph theory are bound to _nd the course 

easier. 

Appropriate Books 

The _rst half of the course will cover material 

available in the following books. 

1. Combinatorics, B. Bollob_as, Cambridge 

University Press 1986. 

2. Ramsey Theory, R. Graham, B. Rothschild 

and J. Spencer, John Wiley 1990. 
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Geometry and Topology Courses 



 

 

Algebraic Geometry (M24) 

Caucher Birkar 

This course is intended to serve as an 

introduction to modern algebraic geometry. 

Algebraic geometry is 

about studying the solutions of systems of 

polynomial equations. However, much of this 

study involves 

geometric intuition and advanced algebraic 

techniques. The methods of algebraic 

geometry are so fruitful 

that they are applied to subjects far beyond 

algebraic geometry such as number theory, 

analytic and 

di_erential geometry, topology, mathematical 

physics, mathematical logic, cryptography, 

etc. 

Topics I hope to cover: sheaves, schemes, 

varieties, morphisms, divisors, di_erential 

forms, cohomology, 

duality, Riemann-Roch theorem, quotient by 

group actions, algebraic groups, etc. 

Pre-requisites 

Previous familiarity with algebraic geometry 

is not necessary but it would be very helpful. 

If you have not 

encountered algebraic geometry before, it is 

recommended that prior to the start of the 

course you browse 

through chapter I of [H] or through [S]. On 

the other hand, commutative algebra is used 

systematically. 

Related courses 

The part III commutative algebra is strongly 

recommended. 

 

Literature 
[AM] M. Atiyah, I. Macdonald. Introduction 

to commutative algebra. Westview Press, 

1994. 

[H] R. Hartshorne. Algebraic geometry. 

Springer, 1977. (Much of the course is based 

on chapters II-III 

of this book.) 

[S] I. Shafarevich. Basic algebraic geometry 

I. Springer, 1994. 

Additional support 

Four examples sheets will be provided and 

two associated examples classes will be 

given. 

Algebraic Topology (M24) 

Ivan Smith 

Algebraic Topology assigns algebraic 

invariants to topological spaces; it permeates 

modern pure mathematics. 

This course will focus on (co)homology, with 

an emphasis on applications in di_erential 

geometry 

and the topology of manifolds. Some basic 

homological algebra and, time permitting, 

some homotopy 

theory will be included. The course will not 

assume any knowledge of algebraic topology, 

but will go quite 

fast in order to reach more interesting 

material, so some previous exposure to 

simplicial homology and / 

or the fundamental group would certainly be 

helpful. Topics to be covered include: 

_ singular homology and cohomology, 

degrees of maps, cellular (co)homology, cup-

product and K• unneth 

theorem; 

_ vector bundles, the Thom isomorphism 

theorem, the Euler class; 
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_ topology of manifolds, Poincar_e duality, 

cup-length and critical points, the Lefschetz 

_xed point 

theorem. 

The course will emphasise examples and 

computations; it will be accompanied by four 

question sheets 

with associated Examples Classes, which will 

again involve applying the general theory to 

do explicit 

calculations and solve geometric problems. 

Pre-requisites 



 

 

Basic topology: topological spaces, 

compactness and connectedness, at the level 

of Sutherland's book. 

Some knowledge of the fundamental group 

would be helpful though not a requirement. 

The Part III 

Di_erential Geometry course will also 

contain useful, relevant material. 

Hatcher's book is especially recommended 

for the course, but there are many other 

suitable texts. 

 

Literature 
1. Bott, R. and Tu, L. Di_erential forms in 

algebraic topology. Springer, 1982. 

2. Hatcher, A. Algebraic Topology. 

Cambridge Univ. Press, 2002. 

3. May, P. A concise course in algebraic 

topology. Univ. of Chicago Press, 1999. 

4. Sutherland, W. Introduction to metric and 

topological spaces. Oxford Univ. Press, 1999. 

Di_erential Geometry (M24) 

P.M.H. Wilson 

This course is intended as an introduction to 

modern di_erential geometry. It can be taken 

with a view to 

further studies in Geometry and Topology 

and should also be suitable as a 

supplementary course if your 

main interests are for instance in Analysis or 

Mathematical Physics. A tentative syllabus is 

as follows. 

_ Local Analysis and Di_erential Manifolds. 

De_nition and examples of manifolds, 

smooth maps. 

Tangent vectors and vector _elds, tangent 

bundle. Geometric consequences of the 

implicit function 

theorem, submanifolds. Lie Groups. 

Di_erential 1-forms, cotangent bundle. 

_ Vector Bundles. Structure group. The 

example of Hopf bundle. Bundle morphisms 

and automorphisms. 

Exterior algebra of di_erential forms. 

Tensors. Orientability of manifolds. 

Partitions of 

unity and integration on manifolds, Stokes 

Theorem; de Rham cohomology. Lie 

derivative of tensors. 

Connections on vector bundles and covariant 

derivatives: covariant exterior derivative, 

curvature. 

Bianchi identity, orthogonal connections. 

_ Riemannian Geometry. Connections on the 

tangent bundle, torsion. Bianchi's identities 

for torsion 

free connections. Riemannian metrics, 

Levi{Civita connection, Christo_el symbols, 

geodesics. Riemannian 

curvature tensor and its symmetries, second 

Bianchi identity, sectional curvatures. Ricci 

tensor and Einstein metrics. Ricci and scalar 

curvatures. Schur's theorem. 

The main references for this course are the 

books listed below and some printed notes on 

the lecturer's 

home page. 

Pre-requisites 

An essential pre-requisite is a working 

knowledge of linear algebra (including 

bilinear forms) and multivariate 

calculus. Exposure to some of the ideas of 

classical di_erential geometry might also be 

found 

useful. 

24 

 

Literature 
1. D. Barden, C. Thomas, An introduction to 

di_erentiable manifolds. Imperial College 

Press, 2003. 

2. R.W.R. Darling, Di_erential forms and 

connections. CUP, 1994. 

3. M. Spivak, Di_erential Geometry, Volume 

2. Publish or Perish, 1999. 

4. F.W. Warner, Foundations of di_erentiable 

manifolds and Lie groups, Springer-Verlag, 

1983. 



 

 

Additional support 

Three or four examples sheets will be 

provided and four associated examples 

classes will be given. The 

fourth class will take place at the start of the 

Lent Term and will also ful_l a revision 

function. 

Morse Theory (L24) 

Jacob Rasmussen 

The basic idea of Morse theory is to study 

how the topology of a smooth manifold M is 

related to the 

critical points of a smooth function f : M ! R. 

In the hands of Lefshetz, Morse, Bott, Smale, 

Witten, 

and Floer, this technique has been one of the 

most productive methods in geometric 

topology over the 

course of the last century. It remains vitally 

important today. 

The course will begin with the basics of 

Morse theory on _nite dimensional 

manifolds, including the Morse 

lemma, handle decompositions, and the 

Morse complex. We will then discuss some 

applications, which 

will be drawn from the following list: 

_ The h-cobordism theorem; the high-

dimensional Poincare conjecture. 

_ The topology of loop spaces; Bott 

periodicity. 

_ Lagrangian Floer homology; the Arnold 

conjecture. 

_ Lefshetz _brations; the Lefshetz hyperplane 

theorem. 

There is clearly more material in the list 

above than can be covered in 24 lectures; 

exactly which topics 

we discuss will depend on audience 

background and interest. 

Pre-requisites 

I will assume the Michaelmas term courses 

on Di_erential Geometry and Algebraic 

Topology. Some 

knowledge of Lie groups and/or symplectic 

geometry may be helpful, but is not required. 

 

Literature 
1. M. Audin and M. Damian, Morse Theory 

and Floer homology (translated from the 

French). Springer, 

2013. 

2. D. McDu_ and D. Salamon, Introduction 

to Symplectic Topology. Oxford University 

Press, 1998. 

3. J. Milnor, Morse Theory. Princeton 

University Press, 1963. 

4. J. Milnor, Lectures on the h-cobordism 

theorem. Princeton University Press, 1965. 

Additional support 

There will be four examples sheets and four 

associated examples classes, as well as a 

revision class in the 

Easter Term. 
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Spectral Geometry (L24) 

Dennis Barden 

The aim of this course is to give an overview 

of the work that has blossomed in response to 

Mark 

Kac' naive sounding question, _rst posed in 

1966: "Can one hear the shape of a drum?" In 

other, more 

general, words can one determine the 

geometry of a Riemannian manifold from the 

spectrum, the set 

of eigenvalues together with their 

multiplicities, of the Laplace operator. The 

answer is, unsurprisingly, 

no: many pairs, and even continuous 

families, of manifolds have since been 

constructed that have the 

same spectrum yet are not isometric. But 

surprisingly, almost yes: these examples are 

very special, 

usually highly symmetric, so that it is still 

possible that generically (a term that may be 

de_ned to suit 



 

 

the context) manifolds are spectrally 

determined. In fact this has already been 

shown to be the case in 

certain contexts and, indeed, Kac' question in 

its original context, planar domains with 

smooth boundary, 

remains open. 

Pre-requisites 

This subject is very much inter-disciplinary 

involving (Riemannian) geometry, analysis 

and topology as 

well as some algebra and minor forays into 

other subjects. However the results needed 

will mostly be 

stated without proof, so that the level of 

knowledge required will be that which is 

su_cient to understand 

and apply the statements of the theorems, 

rather than knowing or necessarily 

understanding their proofs. 

Nothing is truly apposite for preliminary 

reading: full (indeed overfull) notes will be 

produced during the 

course, including a long reference list. A look 

at any item of the  

Literature below will give some feeling for 

the subject, though none contains nor is 

contained in the course. 

 

Literature 
1. M. Berger, P. Gauduchon and E. Mazet, 

Le Spectre d'une Vari_et_e Riemannienne. 

Lecture Notes in 

Math. 194, Springer-Verlag, Berlin-

Heidelberg- New York, 1971. 

2. P. Buser, Geometry and Spectra of 

Compact Riemann Surfaces. Birkh • auser, 

Boston, 1992 

3. Carolyn Gordon, Survey of Isospectral 

Manifolds, in Handbook of Di_erential 

Geometry Vol. 1. 

Elsevier Science, 2000 

4. Isaac Chavel, Eigenvalues in Riemannian 

Geometry. Academic Press, 1984. 

5. S.Rosenberg, The Laplacian on a 

Riemannian Manifold. L.M.S. Student Texts, 

31, Cambridge 

University Press, 1997. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Complex Manifolds (L24) 

Mark Gross 

The goal is to help students learn the basic 

theory of complex manifolds. An outline of 

the course is as 

follows. 

_ Basic concepts of complex manifolds, 

holomorphic vector bundles, holomorphic 

tangent and cotangent 

bundles (for which the corresponding 

concepts from the real smooth manifolds will 

be assumed). 

Canonical line bundles, normal bundle for a 

submanifold and the adjunction formula. 
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_ Brief description of sheaf cohomology, 

with deduction of de Rham and Dolbeault 

cohomology for 

complex manifolds. 

_ Hermitian metrics, connections, curvature 

and Chern classes for complex vector 

bundles. Case of 

holomorphic vector bundles. 

_ Harmonic forms: the Hodge theorem and 

Serre duality (general results on elliptic 

operators will be 

assumed). 

_ Compact K • ahler manifolds. Hodge and 

Lefschetz decompositions on cohomology, 

Kodaira-Nakano 

vanishing, Kodaira embedding theorem. 

Pre-requisites 

A knowledge of basic Di_erential Geometry 

from the Michaelmas term will be essential. 

 

 



 

 

Literature 
1. J. P. Demailly, Complex analytic and 

di_erential geometry. Available as a pdf at 

https://www-fourier.ujf-

grenoble.fr/~demailly/documents.html 

2. P. Gri_ths and J. Harris, Principles of 

Algebraic Geometry. Wiley, 1978. 

3. D. Huybrechts, Complex Geometry | an 

introduction. Springer, 2004. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Algebraic Surfaces (L24) 

Non-Examinable (Graduate Level) 

Ian Grojnowski 

This course is about the geometry of 

algebraic surfaces, a subject which began in 

the 1850s with the 

discovery (Cayley, Salmon) of the 27 lines 

on a non-singular cubic. 

We wll start with the classical description of 

del Pezzo surfaces as the blow up of P2 in at 

most 8 points, 

phrasing this more precisely in terms of the 

moduli of Looijenga pairs (X;E) of the del 

Pezzo and an 

anti-canonical divisor. 

We will play a little with the geometry, 

arithmetic, non-commutative geometry and 

representation theory 

involved in this, and its generalisation to 

other surfaces. 

There is an exhaustive  

Literature on algebric surfaces, both ancient 

and contemporary. Part of the reason 

for the course is to re-examine it from a more 

modern perspective. However, I am very 

much not an 

expert. So though there wil be no 

prerequisites other than basic algebraic 

geometry, if you are an expert 

in any aspect of algebraic surfaces, you 

should pop in now and then and heckle. 

Pre-requisites 

Basic algebraic geometry (coherent sheaf 

cohomology), semisimple Lie algebras or 

algebraic groups. 
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Topics in Algebraic Geometry (L16) 

Non-Examinable (Graduate Level) 

Tyler L. Kelly 

We will study the geometry of Calabi-Yau 

varieties, focussing primarily on the theory of 

K3 surfaces. K3 

Surfaces have a rich theory which crosses 

through many aspects of algebraic geometry, 

requiring various 

tools. 

We will try to strike the right balance of 

geometric intuition with algebraic machinery 

in the course. The 

direction of the lectures will have a bias 

towards mirror symmetry; however, much of 

the course will be 

more classical methods. 

Topics include polarisations of K3 surfaces, 

Picard lattices, elliptic _brations, Kodaira's 

classi_cation of 

singular _bers, Hodge theory of Calabi-Yau 

varieties, periods, and Picard-Fuchs 

equations. If we have 

time, we will continue into more modern 

applications and contexts of this theory. 

Note: This course will not meet during the 

weeks of 25-29 January and 7-11 March. 

Pre-requisites 

The minimal prerequisite is the Part III 

course in Algebraic Geometry. 

Understanding of coherent sheaf 

cohomology and the Hodge decomposition is 

useful. 

 

Literature 
1. M. Gross, D. Huybrechts, D. Joyce, 

Calabi-Yau Manifolds and Related 

Geometries. Springer, 2003. 

2. D. Huybrechts Lectures on K3 Surfaces, 

2011. Available at: 



 

 

http://www.math.uni-

bonn.de/people/huybrech/K3Global.pdf 

3. R. Laza, M. Sch • utt, N. Yui (Eds.), 

Calabi-Yau Varieties: Arithmetic, Geometry 

and Physics, Lecture 

Notes on Concentrated Graduate Courses. 

Fields Institute Monographs, Springer, 2015. 
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Logic 

Introduction to Category Theory (M24) 

Prof. P.T. Johnstone 

Category theory begins with the observation 

(Eilenberg{Mac Lane 1942) that the 

collection of all mathematical 

structures of a given type, together with all 

the maps between them, is itself an instance 

of a 

nontrivial structure which can be studied in 

its own right. In keeping with this idea, the 

real objects 

of study are not so much categories 

themselves as the maps between 

them|functors, natural transformations 

and (perhaps most important of all) 

adjunctions. Category theory has had 

considerable success 

in unifying ideas from di_erent areas of 

mathematics; it is now an indispensable tool 

for anyone doing 

research in topology, abstract algebra, 

mathematical logic or theoretical computer 

science (to name just 

a few areas). This course aims to give a 

general introduction to the basic grammar of 

category theory, 

without any (intentional!) bias in the 

direction of any particular application. It 

should therefore be of 

interest to a large proportion of pure Part III 

students. 

The following topics will be covered in the 

_rst three-quarters of the course: 

Categories, functors and natural 

transformations. Examples drawn from 

di_erent areas of mathematics. 

Faithful and full functors, equivalence of 

categories, skeletons. [4 lectures] 

Locally small categories. The Yoneda 

lemma. Structure of set-valued functor 

categories: generating 

sets, projective and injective objects. [2 

lectures] 

Adjunctions. Description in terms of comma 

categories, and by triangular identities. 

Uniqueness of 

adjoints. Reections and coreections. [3 

lectures] 

Limits. Construction of limits from products 

and equalizers. Preservation and creation of 

limits. The 

Adjoint Functor Theorems. [4 lectures] 

Monads. The monad induced by an 

adjunction. The Eilenberg{Moore and Kleisli 

categories, and their 

universal properties. Monadic adjunctions; 

Beck's Theorem. [4 lectures] 

The remaining seven lectures will be devoted 

to topics chosen by the lecturer, probably 

from among the 

following: 

Filtered colimits. Finitary functors, _nitely-

presentable objects. Applications to universal 

algebra. 

Regular categories. Embedding theorems. 

Categories of relations, introduction to 

allegories. 

Abelian categories. Exact sequences, 

projective resolutions, derived functors. 

Introduction to homological 

algebra. 

Monoidal categories. Coherence theorems, 

monoidal closed categories, enriched 

categories. Weighted 

limits. 

Fibrations. Indexed categories, internal 

categories, de_nability. The indexed adjoint 

functor theorem. 

Pre-requisites 



 

 

There are no speci_c pre-requisites other than 

some familiarity with undergraduate-level 

abstract algebra, 

although a _rst course in logic would be 

helpful. Some of the examples discussed will 

involve more detailed 

knowledge of particular topics in algebra or 

topology, but the aim will be to provide 

enough examples for 

everyone to understand at least some of them. 

 

Literature 
1. S. Mac Lane Categories for the Working 

Mathematician. Springer 1971 (second 

edition 1998). Still 

the best one-volume book on the subject, 

written by one of its founders. 
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2. S. Awodey Category Theory. Oxford U.P. 

2006. A more recent treatment very much in 

the spirit of 

Mac Lane's classic (Awodey was Mac Lane's 

last PhD student), but rather more gently 

paced. 

3. T. Leinster Basic Category Theory. 

Cambridge U.P. 2014. Another gently-paced 

alternative to 

Mac Lane: easy to read, but it doesn't cover 

the whole course. 

4. F. Borceux Handbook of Categorical 

Algebra. Cambridge U.P. 1994. Three 

volumes which together 

provide the best modern account of 

everything an educated mathematician should 

know about 

categories: volume 1 covers most but not all 

of the Part III course. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Computability and Logic (M24) 

Thomas Forster 

Wellfoundedness: structural induction and 

wellfounded induction. Fixed-point theorems. 

Primitive recursive 

functions, General recursive functions. 

Ackermann's function. Goodstein's function. 

Finite state 

machines; pumping lemma, Kleene's 

theorem, Myhill-Nerode. Turing Machines. 

Decidable and semidecidable 

sets. Existence of a Universal Turing 

machine. Craig's theorem. Word problems. 

Kleene's 

T-function. Unsolvability of the Halting 

Problem. Fixed-point theorem. Rice's 

theorem. Recursive inseparability 

and Tennenbaum's theorem. Representation 

of computable functions by _-terms using 

Church 

numerals, Curry-Howard, Church-Rosser. 

Trakhtenbrot's theorem. Productive sets. 

G• odel's incompleteness 

theorem. WQO theory: Kruskal's theorem. 

Recursive ordinals. Hierarchies of fast-

growing functions. 

Kleene-Post. Friedberg-Muchnik and the 

Priority method. Baker-Gill-Solovay. 

Pre-requisites 

No familiarity with computability is 

assumed: this is an advanced beginners 

course for students strong 

enough to do Part III. To the extent that I am 

assuming that everybody has done Part II Set 

Theory and 

Logic I am making assumptions about their 

inclinations rather than their mastery of 

speci_c material. 

 

Literature 
There are numerous good books on this 

subject. The following is in paperback, and 

holders of a Cambridge 

Blue card can acquire it from the CUP 

bookshop in town for a 15% discount. 

1. Cutland, N. Computability, Cambridge 

University Press 



 

 

My draught notes for this course are linked 

from my teaching page 

www.dpmms.cam.ac.uk/~tf/cam_only/partiii

computability.pdf 

and will be gradually updated as I work on 

them over the summer. 

Topics in Set Theory (M24) 

Oren Kolman 

This course is a relatively self-contained 

introduction to independence results in 

modern set theory and 

their repercussions in contemporary 

mathematics. It focuses on the ideas and 

techniques in the proofs, 

using forcing, that the Continuum Hypothesis 

(2@0 = @1) and combinatorial assertions 

relating to in_nite 
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trees can be neither proved nor refuted from 

the principles of ordinary set theory. 

Applications in algebra, 

analysis and topology will be illustrated. We 

shall treat several of the following topics. 

In_nitary combinatorics. Co_nality. 

Stationary sets. Fodor's lemma. Filters and 

ideals. Ulam's 

theorem. Cardinal exponentiation. Beth and 

Gimel functions. Generalized Continuum 

Hypothesis. 

Singular Cardinals Hypothesis. Partial orders 

and trees: Aronszajn, Suslin, and Kurepa. 

Prediction 

principles (diamonds, squares). Martin's 

Axiom. Hypotheses of Suslin and Kurepa; 

the tree property and 

weak compactness. 

Axiomatics. The formal axiomatic system of 

ordinary set theory (ZFC). Models of set 

theory. Absoluteness. 

Simple independence results. Trans_nite 

recursion. Ranks. Reection principles. 

Constructibility. 

Forcing. Generic extensions. The forcing 

theorems. Examples. Adding reals; 

collapsing cardinals. 

Introduction to iterated forcing. Internal 

forcing axioms. Proper forcing. 

Large cardinals. Introduction to large 

cardinals. Ultrapowers. Scott's theorem. 

Embeddings of V . 

Partition relations and possible co_nality 

theory. Partition relations. Model-theoretic 

methods. 

Ramsey's theorem; Erd}os-Rado theorem. 

Kunen's theorem. Walks on ordinals. 

Todorcevic's theorem. 

Introduction to pcf theory. 

Pre-requisites 

The Part II course Logic and Set Theory or 

its equivalent is essential. It will also su_ce to 

have studied 

enough of the material in the preliminary 

reading. 

Preliminary Reading 

1. Kunen, K. Set Theory, Studies in Logic, 

vol. 34, revised edition, College Publications, 

London, 2013, 

pages 1{81. 

2. Weaver, N. Forcing for Mathematicians, 

World Scienti_c, 2014, pages 1{20. 

 

Literature 
Basic material 

1. y Drake, F. R., Singh, D. Intermediate Set 

Theory, John Wiley, Chichester, 1996. 

2. Eklof, P. C., Mekler, A. H. Almost Free 

Modules, rev. ed., North-Holland, 

Amsterdam, 2002. 

3. Halbeisen, L. Combinatorial Set Theory 

With a Gentle Introduction to Forcing, 

Springer, Berlin, 

2012. 

4. Kanamori, A. The Higher In_nite, 2nd ed., 

Springer, Berlin, 2009. 

5. y Kunen, K. Set Theory, Studies in Logic, 

vol. 34, revised edition, College Publications, 

London, 

2013. 

6. Weaver, N. Forcing for Mathematicians, 

World Scienti_c, 2014. 



 

 

Advanced topics 

7. Burke, M. R., Magidor, M. Shelah's pcf 

theory and its applications, Ann. Pure Appl. 

Logic 50 

(1990), 207{254. 

8. Kanamori, A., Foreman, M. Handbook of 

Set Theory, Springer, Berlin, 2012. 

9. y Shelah, S. Proper and Improper Forcing, 

2nd edition, Springer, Berlin, 1998. Chapters 

1 and 2. 
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10. Shelah, S. Cardinal Arithmetic, Oxford 

University Press, New York, 1994. 

11. Todorcevic, S. Combinatorial 

dichotomies in set theory, Bull. Symbolic 

Logic 17 (2011), 1{72. 

12. Todorcevic, S. Notes on Forcing Axioms, 

World Scienti_c, 2014. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. Individual 

consultations will be o_ered. There will be a 

two-hour revision class in the Easter Term. 

Topics in Category Theory (L24) 

Ignacio L_opez Franco 

This course aims to introduce the basic 

theory of monoidal and braided categories 

and some of its connections 

to the theory of Hopf algebras (algebraic 

structures that include quantum groups and 

a_ne algebraic 

groups). The theory of braided categories, an 

evolution of the symmetric categories, arose 

in the eighties 

more or less at the same time as Drinfel0d 

work on quasi-triangular Hopf algebras and 

quantum groups. 

Since then, many aspects of both theories 

have developed hand in hand, and in some 

respects there is 

a dictionary that allow us to translate 

constructions and properties from one to the 

other. This dictionary 

is sometimes called Tannakian duality or 

reconstruction, and characterises bialgebras, 

Hopf algebras 

and (co)quasi triangular bialgebras in terms 

of extra structure on their categories of 

(co)representations: 

respectively, a monoidal structure, internal 

homs, a braiding. 

Topics to be covered include: coherence 

theorem for monoidal categories, internal 

homs and duals, braidings; 

coalgebras, bialgebras and comodules; duals 

and antipodes, Hopf algebras. (Co)quasi 

triangular 

bialgebras and their (co)modules; Tannakian 

reconstruction of Hopf algebras. If time 

allows, integrals in 

Hopf algebras. 

Pre-requisites 

The _rst course on Category Theory of 

Michaelmas Term, or equivalent knowledge, 

is essential. Familiarity 

with coalgebras and comodules, or 

representations of algebraic groups, may be 

of help. 

 

Literature 
1. S. Mac Lane, Categories for the working 

mathematician. Springer-Verlag, 1998. 

2. A. Joyal and R. Street, Braided tensor 

categories. Advances in Mathematics, vol. 

102, 1993, pp. 20{ 

79. 

3. C. Kassel, Quantum groups. Graduate 

Texts in Mathematics, vol. 155, Springer-

Verlag, 1995. 

4. Street, Ross, Quantum groups: a path to 

current algebra. Australian Mathematical 

Society Lecture 

Series, Vol. 19, Cambridge University Press, 

2007. 

Additional support 

There will be four example sheets. Example 

classes and a revision class will be provided. 
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Descriptive Set Theory (M24) 

Non-Examinable (Graduate Level) 

A.R.D. Mathias 

This course constitutes an introduction to the 

concepts and methods of the set-theoretical 

side of mathematical 

logic, and will take as its unifying theme the 

study of Borel and other de_nable subsets of 

Euclidean space and other Polish (aka 

complete separable metric) spaces, which 

began in the _rst decade 

of the twentieth century. 

In the second decade, it was discovered that 

analytic sets (that is, continuous images of 

Borel sets) need 

not be Borel; a landmark result was Souslin's 

proof in 1916 that a subset of a Polish space 

is Borel if both 

it and its complement are analytic. The 

fascination of this proof is that it involves not 

just the Polish 

space but also the set of countable ordinals. 

In the third and fourth decades, the emergent 

subject of recursion theory (aka 

computability) contributed 

to the re_nement of the theory. A further 

development, in the 1950s, was the study, 

given a game of 

in_nite length between two players, of 

whether one of the players will have a 

winning strategy, and the 

discovery that such questions necessarily 

involve strong set-theoretic axioms. 

The course aims to be self-contained, but 

familiarity with the idea of de_nition by 

recursion on a wellfounded 

relation will be helpful. Among topics to be 

treated are: 

Well-orderings, ordinals, axioms and 

transitive models of Zermelo-Fraenkel set 

theory 

Borel codes and their absoluteness; analytic 

sets, seen as projections of trees; Souslin's 

theorem. 

Kleene boundedness, norms, scales, 

uniformisation; von Neumann choice for 

analytic sets 

Lebesgue measure and Baire category; the 

simplest non-measurable set; the Ramsey and 

perfect set 

properties; selective ultra_lters. 

The determinacy of open games; proof in 

ZFC of the determinacy of Borel games; 

proof, using a large 

cardinal, of the determinacy of analytic 

games. 

Unprovability of Borel determinacy in ZFC 

without the scheme of replacement. 

The Martin measure; unprovability of 

analytic determinacy in ZFC. 

Consequences of the axiom of determinacy. 

If time permits, results on Borel and other 

de_nable equivalence relations, and on 

universally Baire sets. 

Background reading 

1 and 2 are from the early period; 3, though 

perhaps too advanced, has excellent historical 

remarks; 4 is 

rather easier. 

1. K.Kuratowski Topology 

2. J.C.Oxtoby Measure and Category 

3. Y.N.Moschovakis Descriptive set theory 

4. A.S.Kechris Classical descriptive set 

theory 

WQOs and BQOs (E16) 

Non-Examinable (Graduate Level) 

Thomas Forster 

A WQO (\well-quasi-order") is a quasiorder 

(preorder) with no in_nite antichains and no 

in_nite (strictly) 

descending chains. WQOs are to be found all 

over the place: Kruskal's theorem states that 

the embedding 
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relation between _nite trees decorated with 

elements of a WQO is a WQO. Seymour-

Robertson states 



 

 

that _nite graphs are WQO by the graph 

minor relation, and there is a recent analogue 

for matroids. 

We shall prove Kruskal (it will also be 

treated briey in my Part III Computability 

and Logic course in 

Michaelmas) but not Seymour-Robertson. 

The class of all WQOs is not closed under all 

the operations 

one might expect and this fact leads one to a 

natural subclass (of \Better Quasi Orders") of 

WQOs that 

is so closed. The de_nition of BQO is subtle! 

Laver proved that the class of countable 

linear order types 

into which one cannot embed the rationals is 

BQO under injective embedding, and I plan 

to present a 

proof of this fact. 

This is a rapidly expanding area and the aim 

of a twelve lecture course can only be to 

provide a thorough 

grounding and some pointers. 

Pre-requisites 

A background in Logic and Combinatorics 

will help, but this material should be 

accessible to any Pure 

graduate student, Part III and above. 

 

Literature 
There is no textbook. (This course is in part a 

side-e_ect of the lecturer's endeavour to write 

one!) A 

home page for this course will be maintained 

on 

www.dpmms.cam.ac.uk/~tf/cam_only/partiv

materials.html 

and there are links thence to my draught 

notes for this course and some Part III essays 

from earlier years 

on the theorem of Laver alluded to above. 

http://hdl.handle.net/2027.42/41670 
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Number Theory 

Algebraic Number Theory (M24) 

J. A. Thorne 

Algebraic number theory lies at the 

foundation of much current research in 

number theory, from Fermat's 

last theorem to the proof of the Sato{Tate 

conjecture, and is a beautiful subject in its 

own right. This will 

be a second course in algebraic number 

theory, with an emphasis on local (p-adic) 

aspects of the theory. 

Topics likely to be covered include: 

Dedekind domains, localization, and passage 

to completion. The p-adic numbers. 

Galois theory of Dedekind domains and 

rami_cation theory. 

Artin and abelian L{functions. 

Class _eld theory (review of statements 

only). 

Pre-requisites 

Part II Galois Theory and Part IB Groups, 

Rings and Modules (or equivalent) are 

essential pre-requisites. 

 

Literature 
1. S. Lang, Algebraic number theory. 

Graduate Texts in Mathematics, 110. 

Springer-Verlag, New York, 

1994. 

2. H. P. F. Swinnerton-Dyer, A brief guide to 

algebraic number theory. London 

Mathematical Society 

Student Texts, 50. Cambridge University 

Press, Cambridge, 2001. 

3. J.-P. Serre, Local _elds. Graduate Texts in 

Mathematics, 67. Springer-Verlag, New 

York-Berlin, 

1979. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Probabilistic Number Theory (M24) 

Adam Harper 



 

 

Probabilistic number theory began gradually 

in the work of authors like Hardy and 

Ramanujan, Tur_an, 

and Erd}os and Kac, when they proved local 

limit theorems and a central limit theorem for 

the function 

!(n), the number of distinct prime factors of 

n, by exploiting the \almost independence" of 

divisibility by 

di_erent primes. Nowadays probabilistic 

ideas (sometimes of great sophistication) 

permeate throughout 

pure mathematics, providing powerful but 

sometimes misleading heuristics, and 

methods for rigorously 

attacking di_cult problems. This course will 

try to illustrate some areas of number theory 

where probabilistic 

ideas have been signi_cant, in the process 

developing the relevant probabilistic tools. 

The course will cover some of the following 

topics, depending on time and audience 

preferences. 
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1. Additive functions. De_nition of additive 

functions, and the analogy with sums of 

independent 

random variables. The Tur_an{Kubilius 

inequality for the variance, and applications. 

Proof of the 

Erd}os{Kac central limit theorem via the 

method of moments. The rate of convergence 

in the Erd}os{ 

Kac theorem. The special case !(n). 

Application to Vinogradov-type bilinear 

sums, and ergodic 

theory. 

2. Heuristics. The M • obius function _(n), 

and heuristics for the Riemann Hypothesis. 

Heuristics for 

primes in tuples (Hardy{Littlewood) and in 

short intervals (Cram_er, via Borel{Cantelli). 

Success 

and failure of these heuristics. The M • obius 

Randomness conjectures. 

3. The Riemann zeta function on the critical 

line. De_nition and introduction to the zeta 

function 

_(s). Selberg's central limit theorem for log 

j_(1=2 + it)j. The rise of random matrix 

theory, and 

moments of the zeta function. Moments of 

zeta via Selberg's central limit theorem. 

Heuristics about 

extreme values of log j_(1=2 + it)j. The 

connection with branching random walk. 

4. Other topics (if time permits). Non-

Gaussian approximations and limit theorems. 

Symmetry types 

in random matrix theory and the Selberg 

central limit theorem. Probabilistic 

construction and 

deletion arguments (e.g. in additive 

combinatorics). 

Pre-requisites 

This course will assume that you have 

attended a basic course on probability theory, 

and therefore have 

some familiarity with things like Markov's 

inequality and some basic statement of the 

central limit theorem. 

It will not assume familiarity with any 

number theory concepts, nor with any more 

advanced 

probability theory (in particular there is no 

need to have attended or enjoyed a measure-

theoretic course 

on probability). The course will have a avour 

of estimating complicated objects and 

handling error terms, 

which might be familiar from previous 

courses in analysis or probability. 

 

Literature 
1. G. Tenenbaum, Introduction to analytic 

and probabilistic number theory. Cambridge 

Studies in 

Advanced Mathematics, vol. 46, 1995. 



 

 

2. E. C. Titchmarsh. The Theory of the 

Riemann Zeta-function. Second edition, 

revised by D. R. 

Heath-Brown. Oxford University Press, 1986 

I don't know of any single book that covers 

all the material in the course. Tenenbaum's 

book is quite 

a nice introduction to analytic number theory, 

with good material on additive functions and 

also some 

coverage of the Riemann zeta function 

(although not to the level of the course). 

Titchmarsh's book is the 

classic introduction to the zeta function. The 

two volumes Probabilistic Number Theory I 

and Probabilistic 

Number Theory II by P. D. T. A. Elliott are 

monographs rather than textbooks, but give 

an extensive 

account of classical probabilistic number 

theory with many historical notes. Many 

other books contain 

some relevant material, for example Iwaniec 

and Kowalski, Analytic Number Theory. 

Additional support 

I plan to write three examples sheets and run 

three associated examples classes. There will 

also be a 

revision class in the Easter Term. 

Elliptic Curves (L24) 

Tom Fisher 

Elliptic curves are the _rst non-trivial curves, 

and it is a remarkable fact that they have 

continuously 

been at the centre stage of mathematical 

research for centuries. This will be an 

introductory course on 
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the arithmetic of elliptic curves, 

concentrating on the study of the group of 

rational points. The following 

topics will be covered, and possibly others if 

time is available. 

Weierstrass equations and the group law. 

Methods for putting an elliptic curve in 

Weierstrass form. 

De_nition of the group law in terms of the 

chord and tangent process. Associativity via 

the identi_cation 

with the Jacobian. Elliptic curves as group 

varieties. 

Isogenies. De_nition and examples. The 

degree of an isogeny is a quadratic form. The 

invariant 

di_erential and separability. The torsion 

subgroup over an algebraically closed _eld. 

Elliptic curves over _nite _elds. Hasse's 

theorem. 

Elliptic curves over local _elds. Formal 

groups and their classi_cation over _elds of 

characteristic 

0. Minimal models, reduction mod p, and the 

formal group of an elliptic curve. Singular 

Weierstrass 

equations. 

Elliptic curves over number _elds. The 

torsion subgroup. The Lutz-Nagell theorem. 

The weak 

Mordell-Weil theorem via Kummer theory. 

Heights. The Mordell-Weil theorem. Galois 

cohomology and 

Selmer groups. Descent by 2-isogeny. 

Numerical examples. 

Pre-requisites 

Familiarity with the main ideas in the Part II 

courses Galois Theory and Number Fields 

will be assumed. 

The _rst few lectures will include a review of 

the necessary geometric background, but 

some previous 

knowledge of algebraic curves (at the level of 

the _rst two chapters of [3]) would be very 

helpful. Later in 

the course, some basic knowledge of the _eld 

of p-adic numbers will be assumed. 

Preliminary Reading 

1. J.H. Silverman and J. Tate, Rational Points 

on Elliptic Curves, Springer, 1992. 



 

 

 

Literature 
2. J.W.S. Cassels, Lectures on Elliptic 

Curves, CUP, 1991. 

3. J.H. Silverman, The Arithmetic of Elliptic 

Curves, Springer, 1986. 

Additional support 

There will be four example sheets and four 

associated examples classes. 

Modular Forms (L16) 

Prof. A. J. Scholl 

Modular Forms are classical objects that 

appear in many areas of mathematics, from 

number theory to 

representation theory and mathematical 

physics. Most famous is, of course, the role 

they played in the 

proof of Fermat's Last Theorem, through the 

conjecture of Shimura-Taniyama-Weil that 

elliptic curves 

are modular. This course will cover the 

classical theory of modular forms (modular 

curves over C, Hecke 

operators, Dirichlet series) and some number 

theoretic applications. 

Pre-requisites 

Prerequisites for the course are fairly modest; 

some knowledge of quadratic _elds and of 

holomorphic 

functions in one complex variable (including 

basic concepts from the theory of Riemann 

surfaces) will be 

helpful. 
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Literature 
1. J. P. Serre, A course in Arithmetic, 

Graduate Texts in Maths. 7, Springer, New 

York, 1973 (Chapter 

VII is an easy-going introduction to the 

subject). 

2. D. Bump, Automorphic forms and 

representations, Cambridge Studies in Adv. 

Maths. 55, CUP, 

Cambridge, 1997 (Sections 1.1-1.6 of 

Chapter I are particularly relevant). 

3. F. Diamond, J. Shurman, A First Course in 

Modular Forms, Graduate Texts in Maths. 

228, 

Springer, New York, 2005 (a good reference 

providing also an introduction to the 

algebraic theory 

of modular forms). 

4. J. Milne, Modular Functions and Modular 

Forms, Lecture notes from a course, 

download available 

at http://www.jmilne.org/math. 

Additional references for enthusiasts 

5. T. Miyake, Modular Forms, Springer, 

Berlin, 1989 (a standard reference for 

classical theory of 

modular forms). 

6. F. Diamond, J. Im, Modular forms and 

modular curves, in: Seminar on Fermat's Last 

Theorem, 

CMS Conf. Proc. 17, Amer. Math. Soc., 

Providence, RI, 1995, 39-133. 

7. J. Coates, Shing-Tung Yau, Elliptic curves, 

modular forms & Fermat's last theorem- 

Conference 

Proceedings, International Press, Cambridge, 

MA, 1997 (in particular, the survey article by 

H. 

Darmon, F. Diamond, R. Taylor). 

8. H. Hida, Elementary theory of L-functions 

and Eisenstein series, London Math. Soc. 

Student Texts 

26, CUP, Cambridge, 1993 (not so 

elementary introduction to arithmetic of 

modular forms). 

p-adic Families of Modular Forms (M16) 

Non-Examinable (Graduate Level) 

Dr. G. Rosso 

The aim of the course is to explain how an 

automorphic form can be p-adically 

deformed. After recalling the 

theory of p-adic modular forms, we shall 

explain the main ideas behind Hida's 

construction of families for 



 

 

ordinary forms with particular focus on the 

two possible di_erent approaches 

(cohomological or coherent). 

His constructions have been generalized to 

many other settings (_nite slope families, 

forms on higher rank 

groups) and has connection with p-adic L-

functions. According to the taste of the 

audience we shall deal 

with some of these topics. 
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Probability 

Advanced Probability (M24) 

James Norris and Gourab Ray 

The aim of the course is to introduce students 

to advanced topics in modern probability 

theory. The 

emphasis is on tools required in the rigorous 

analysis of stochastic processes, such as 

Brownian motion, 

and in applications where probability theory 

plays an important role. 

Review of measure and integration: sigma-

algebras, measures, and _ltrations; integrals 

and expectation; 

convergence theorems; product measures, 

independence, and Fubini's theorem. 

Conditional expectation: Discrete case, 

Gaussian case, conditional density functions; 

existence and 

uniqueness; basic properties. 

Martingales: Martingales and submartingales 

in discrete time; optional stopping; Doob's 

inequalities, 

upcrossings, martingale convergence 

theorems; applications of martingale 

techniques. 

Stochastic processes in continuous time: 

Kolmogorov's criterion, regularization of 

paths; martingales 

in continuous time. 

Weak convergence: De_nitions and 

characterizations; convergence in 

distribution, tightness, Prokhorov's 

theorem; characteristic functions, L_evy's 

continuity theorem. 

Sums of independent random variables: 

Strong laws of large numbers; central limit 

theorem; 

Cram_er's theory of large deviations. 

Brownian motion: Wiener's existence 

theorem, scaling and symmetry properties; 

martingales associated 

with Brownian motion, the strong Markov 

property, hitting times; properties of sample 

paths, recurrence 

and transience; Brownian motion and the 

Dirichlet problem; Donsker's invariance 

principle. 

Poisson random measures: De_nitions, 

compound Poisson processes; in_nite 

divisibility, the L_evy- 

Khinchin formula, L_evy-It^o 

decomposition. 

Pre-requisites 

A basic familiarity with measure theory and 

the measure-theoretic formulation of 

probability theory is 

very helpful. These foundational topics will 

be reviewed at the beginning of the course, 

but students 

unfamiliar with them are expected to consult 

the  

Literature (for instance, Williams' book) to 

strengthen 

their understanding. 

 

Literature 
_ D. Applebaum, L_evy processes (2nd ed.), 

Cambridge University Press 2009. 

_ R. Durrett, Probability: Theory and 

Examples (4th ed.), CUP 2010. 

_ O. Kallenberg, Foundations of Modern 

Probability, Springer-Verlag, 1997. 

_ D. Williams, Probability with martingales, 

CUP 1991. 

Additional support 



 

 

Four example sheets will be provided along 

with supervisions. There will be a revision 

class in Easter 

term. 

Stochastic Calculus (L24) 

Jason Miller 

This course will be an introduction to It^o 

calculus. 
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_ Brownian motion. Existence and sample 

path properties. 

_ Stochastic calculus for continuous 

processes. Martingales, local martingales, 

semi-martingales, quadratic 

variation and cross-variation, It^o's isometry, 

de_nition of the stochastic integral, Kunita-

Watanabe 

theorem, and It^o's formula. 

_ Applications to Brownian motion and 

martingales. L_evy characterization of 

Brownian motion, 

Dubins-Schwartz theorem, martingale 

representation, Girsanov theorem, conformal 

invariance of 

planar Brownian motion, and Dirichlet 

problems. 

_ Stochastic di_erential equations. Strong and 

weak solutions, notions of existence and 

uniqueness, 

Yamada-Watanabe theorem, strong Markov 

property, and relation to second order partial 

di_erential 

equations. 

_ Stroock{Varadhan theory. Di_usions, 

martingale problems, equivalence with SDEs, 

approximations 

of di_usions by Markov chains. 

Pre-requisites 

We will assume knowledge of measure 

theoretic probability as taught in Part III 

Advanced Probability. 

In particular we assume familiarity with 

discrete-time martingales and Brownian 

motion. 

 

Literature 
1. R. Durrett Probability: theory and 

examples. Cambridge. 2010 

2. I. Karatzas and S. Shreve Brownian 

Motion and Stochastic Calculus. Springer. 

1998 

3. P. Morters and Y. Peres Brownian Motion. 

Cambridge. 2010 

4. D. Revuz and M. Yor, Continuous 

martingales and Brownian motion. Springer. 

1999 

5. L.C. Rogers and D. Williams Di_usions, 

Markov Processes, and Martingales. 

Cambridge. 2000 

Schramm-Loewner Evolutions (L16) 

James Norris 

Schramm-Loewner Evolution (SLE) is a 

family of random curves in the plane, 

indexed by a parameter 

_ _ 0. These non-crossing curves are the 

fundamental tool used to describe the scaling 

limits of a host 

of natural probabilistic processes in two 

dimensions, such as critical percolation 

interfaces and random 

spanning trees. Their introduction by Oded 

Schramm in 1999 was a milestone of modern 

probability 

theory. 

The course will focus on the de_nition and 

basic properties of SLE. The key ideas are 

conformal invariance 

and a certain spatial Markov property, which 

make it possible to use It^o calculus for the 

analysis. In 

particular we will show that, almost surely, 

for _ _ 4 the curves are simple, for 4 _ _ < 8 

they have 

double points but are non-crossing, and for _ 

_ 8 they are space-_lling. We will then 

explore the properties 

of the curves for a number of special values 

of _ (locality, restriction properties) which 

will allow us to 



 

 

relate the curves to other conformally 

invariant structures. 

The fundamentals of conformal mapping will 

be needed, though most of this will be 

developed as required. 

A basic familiarity with Brownian motion 

and It^o calculus will be assumed but 

recalled. 
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Literature 
1. Nathana• el Berestycki and James Norris. 

Lecture notes on SLE. 

http://www.statslab.cam.ac.uk/_james/Lectur

es 

2. Wendelin Werner. Random planar curves 

and Schramm-Loewner evolutions, 

arXiv:math.PR/0303354, 2003. 

3. Gregory F. Lawler. Conformally Invariant 

Processes in the Plane, AMS, 2005. 

Additional support 

Two examples sheets will be provided and 

examples classes given. There will be a 

revision class in Easter 

Term. 

Percolation and Related Topics (L16) 

Geo_rey Grimmett 

The percolation process is the simplest 

probabilistic model for a random medium in 

_nite-dimensional 

space. It has a central role in the general 

theory of disordered systems arising in the 

mathematical 

sciences, and it has strong connections with 

statistical mechanics. Percolation has a 

reputation as a 

source of beautiful mathematical problems 

that are simple to state but seem to require 

new techniques 

for solution, and a number of such problems 

remain very much alive. Amongst 

connections of topical 

importance are the relationships to so-called 

Schramm{Loewner evolutions (SLE), and to 

the theory of 

phase transitions in physics. 

The basic theory of percolation will be 

described in this course, with some emphasis 

on areas for future 

development. The fundamental techniques, 

including correlation and/or concentration 

inequalities and 

their rami_cations,will be covered. The 

related topics may include self-avoiding 

walks, and further models 

from interacting particle systems, and (if time 

permits) certain physical models for the 

ferromagnet such 

as the Ising and Potts models. 

Pre-requisites 

There are no essential pre-requisites beyond 

probability and analysis at undergraduate 

levels, but a familiarity 

with the measure-theoretic basis of 

probability will be helpful. 

 

Literature 
The following texts will cover the majority of 

the course, and are available online. 

1. Grimmett, G. R., Probability on Graphs, 

Cambridge University Press, 2010; 

see 

http://www.statslab.cam.ac.uk/_grg/books/pg

s.html 

2. Grimmett, G. R., Three theorems in 

discrete random geometry, Probability 

Surveys 8, 

(2011) 403{411; see 

http://arxiv.org/abs/1110.2395 

Additional support 

It is expected that there will be two example 

sheets and two classes. 
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Statistics 

The courses in statistics form a coherent 

Masters-level course in statistics, covering 

theoretical statistics, 

applied statistics and applications. You may 

take all of them, or a subset of them. Core 

courses are 



 

 

Modern Statistical Methods and Applied 

Statistics in the Michaelmas Term. 

All statistics courses for examination in Part 

III assume that you have taken an 

introductory course in 

statistics and one in probability, with 

syllabuses that cover the topics in the 

Cambridge undergraduate 

courses Probability in the _rst year and 

Statistics in the second year. It is helpful if 

you have taken 

more advanced courses, although not 

essential. For Applied Statistics and other 

applications courses, it 

is helpful, but not essential, if you have 

already had experience of using a software 

package, such as R or 

Matlab, to analyse data. The statistics courses 

assume some mathematical maturity in terms 

of knowledge 

of basic linear algebra and analysis. 

However, they are designed to be taken 

without a background in 

measure theory, although some knowledge of 

measure theory is helpful for Topics in 

Statistical Theory. 

The desirable previous knowledge for 

tackling the statistics courses in Part III is 

covered by the following 

Cambridge undergraduate courses. The 

syllabuses are available online at 

http://www.maths.cam.ac.uk/undergrad/sche

dules/ 

Year Courses 

First Essential Probability 

Second Essential Statistics 

Helpful for some courses Markov Chains 

Third Helpful Principles of Statistics 

Helpful Statistical Modelling 

For additional background Probability and 

Measure 

If you have not taken the courses marked 

'essential'then you should review the relevant 

material over the 

vacation. If you have more time, then it 

would be helpful to review other courses as 

indicated. 

Modern Statistical Methods (M16) 

Rajen Shah 

The remarkable development of computing 

power and other technology now allows 

scientists and businesses 

to routinely collect datasets of immense size 

and complexity. Most classical statistical 

methods were 

designed for situations with many 

observations and a few, carefully chosen 

variables. However, we now 

often gather data where we have huge 

numbers of variables, in an attempt to capture 

as much information 

as we can about anything which might 

conceivably have an inuence on the 

phenomenon of interest. This 

dramatic increase in the number variables 

makes modern datasets strikingly di_erent, as 

well-established 

traditional methods perform either very 

poorly, or often do not work at all. 

Developing methods that are able to extract 

meaningful information from these large and 

challenging 

datasets has recently been an area of intense 

research in statistics, machine learning and 

computer science. 

In this course, we will study some of the 

methods that have been developed to study 

such datasets. We 

aim to cover a selection of the following 

topics: 

_ Penalised regression, including Ridge 

regression, the Lasso and variants; 

_ Machine learning methods including 

Boosting, Support vector machines, and the 

kernel trick; 

_ Multiple testing, including the False 

Discovery Rate and the Benjamini{Hochberg 

procedure; 



 

 

_ Graphical modelling and aspects of causal 

inference. 
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Pre-requisites 

Basic knowledge of statistics, probability and 

linear algebra. 

 

Literature 
1. T. Hastie, R. Tibshirani and J. Friedman 

The Elements of Statistical Learning. 2nd 

edition. 

Springer, 2001. 

2. P. B• uhlmann, S. van de Geer, Statistics 

for High-Dimensional Data. Springer, 2011. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 

Applied Statistics (Michaelmas and Lent 

(24)) 

Davide Pigoli 

This course is split over two terms, with 16 

hours (8 lectures and 8 practical classes) in 

the Michaelmas 

Term and 8 hours (4 lectures and 4 practical 

classes) in the Lent Term. It is a practical 

course aiming 

to develop skills in analysis and 

interpretation of data. In the Michael- mas 

Term, core topics in applied 

statistics are studied, while in the Lent Term 

more specialised topics are covered. The 

statistical methods 

below will be put into practice using R. 

Michaelmas Term 

Introduction to R. Exploratory data analysis, 

graphical summaries. 

Linear regression and its assumptions. 

Relevant diagnostics: residuals, Q-Q plots, 

leverages, Cook's 

distances and related methods. Hypothesis 

tests for linear models, ANOVA, F-tests. 

Interpretation of 

interactions. 

The essentials of generalised linear 

modelling. Discrete data analysis: binomial 

and Poisson regression. 

Diagnostics, goodness-of-_t and model 

selection. 

Lent term 

Some special topics. Previous examples 

include generalised additive models and 

longitudinal data analysis. 

Pre-requisites 

It is assumed that you will have done an 

introductory statistics course, including: 

elementary probability 

theory; maximum likelihood; hypothesis tests 

(t-tests, _2-tests, F-tests); con_dence 

intervals. 

 

Literature 
1. Agresti, A. (1990) Categorical Data 

Analysis. Wiley. 

2. Dobson, A.J. and Barnett A. (2008) An 

Introduction to Generalized Linear Models. 

Third edition. 

Chapman & Hall/CRC. 

3. Faraway, J. J. (2014) Linear models with 

R. CRC Press. 

4. Faraway, J. J. (2005) Extending the linear 

model with R: generalized linear, mixed 

e_ects and non- 

parametric regression models. CRC press. 
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Additional support 

This course includes practical classes in both 

the Michaelmas and Lent Terms, where 

statistical methods 

are introduced in a practical context and 

where students carry out analysis of datasets 

under the guidance 

of the lecturer. In practical classes, the 

students have the opportunity to discuss 

statistical questions 

with the lecturer. Three examples sheets will 

be provided and there will be three associated 

examples 



 

 

classes. Because emphasis in this course is 

placed on the importance of the clear 

presentation of statistical 

analyses, students will also have the 

opportunity to hand in written reports on two 

analyses, and these 

will be marked and feedback given to 

students. There will be a revision class in the 

Easter Term. 

Biostatistics (M10+L14) 

This course consists of two components, 

Statistics in Medical Practice (10 lectures) 

and Analysis of Survival 

Data (14 lectures). Together these make up 

one 3 unit (24 lecture) course. You must take 

the two 

components together for the examination. 

Statistics in Medical Practice (M10) 

R. Turner, C. Jackson, J. Wason, S. Villar, D. 

de Angelis, A. Presanis, 

P. Birrell, S. Seaman 

Each lecture will be a self-contained study of 

a topic in biostatistics, which may include 

clinical trials, 

meta-analysis, missing data, multi-state 

models and infectious disease modelling. The 

relationship between 

the medical issue and the appropriate 

statistical theory will be illustrated. 

Pre-requisites 

Undergraduate-level statistical theory, 

including estimation, hypothesis testing and 

interpretation of _ndings. 

 

Literature 
There are no course books, but relevant 

medical papers will be made available before 

some lectures 

for prior reading. It would be very useful to 

have some familiarity with media coverage 

of medical 

stories involving statistical issues, e.g. from 

Behind the Headlines on the NHS Choices 

website: 

http://www.nhs.uk/News/Pages/NewsIndex.a

spx. A few books to complement the course 

material are 

listed below. 

1. Armitage P, Berry G, Matthews JNS. 

Statistical Methods in Medical Research. 

Wiley-Blackwell, 

2001 

2. Borenstein M, Hedges L, Higgins JPT, 

Rothstein HR. Introduction to Meta-Analysis. 

Wiley, 2009 

3. Jennison C, Turnbull B. Group Sequential 

Methods with Applications to Clinical Trials. 

Chapman 

and Hall, 2000 

Additional support 

An example class will be given, with 

question sheets and solutions. 
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Analysis of Survival Data (L14) 

F. P. Treasure 

Fundamentals of Survival Analysis: 

Characteristics of survival data; censoring. 

De_nition and properties of the survival 

function, hazard and 

integrated hazard. Examples. 

Review of inference using likelihood. 

Estimation of survival function and hazard 

both parametrically and 

non-parametrically. 

Explanatory variables: accelerated life and 

proportional hazards models. Special case of 

two groups. 

Model checking using residuals. 

Current Topics in Survival Analysis: 

In recent years there have been lectures on: 

frailty, cure, relative survival, empirical 

likelihood, counting 

processes and multiple events. 

Pre-requisites 

This course assumes assumes that you have 

attended an undergraduate course in statistics 

and that you 



 

 

are familiar with hypothesis testing, point and 

interval estimation, and likelihood methods. 

Attendance 

at the Michaelmas term course `Applied 

Statistics' would be very helpful, not least for 

the introduction 

to the R language. 

 

Literature 
1. P. Armitage, J. N. S. Matthews and G. 

Berry Statistical Methods in Medical 

Research (4th ed.), 

Oxford: Blackwell (2001) [Chapter on 

Survival Analysis for preliminary reading]. 

2. D. R. Cox and D. Oakes Analysis of 

Survival Data London: Chapman and Hall 

(1984). 

3. M. K. B. Parmar and D. Machin Survival 

Analysis: A Practical Approach Chichester: 

John Wiley 

(1995) 

4. Therneau T.M. and Grambsch P.M. 

Modelling Survival Data: Extending the Cox 

Model New York: 

Springer (2000) 

Additional support 

There will be a two hour revision class based 

on student-selected examination questions in 

the Easter 

Term. 

Time Series and Monte Carlo Inference 

(M12+L12) 

This course consists of two components, 

Time Series, and Monte Carlo Inference, 

each consisting of 12 

lectures. Together these make up one 3 unit 

(24 lecture) course. You must take the two 

components 

together for the examination. 
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Time Series (M12) 

Jean-Marc Freyermuth 

This is the _rst part of the lecture course 

which also includes Monte Carlo Methods. 

A time series is a collection of observations 

acquired over the time. In these lectures, we 

model time 

series data as realizations of some class of 

stochastic processes. Our main goal is to 

perform statistical 

inference on the data generating process in 

order to choose a suitable model, estimate its 

parameters and 

ultimately forecast it. We will essentially 

study the parametric modeling of linear 

stochastic processes 

using the AutoRegressive Moving Average 

model and some of its variants. Basics of 

frequency domain 

analysis of time series will be covered as 

well. If time allows, the last lecture will be 

devoted to more 

recent topics of time-varying ARMA and 

periodic ARMA models. 

Pre-requisites 

Basic knowledge of statistics and probability. 

 

Literature 
1. P. J. Brockwell and R. A. Davis 

Introduction to Time Series and Forecasting. 

2nd edition. Springer 

Texts in Statistics, 2002. 

2. P. J. Brockwell and R. A. Davis, Time 

Series: Theory and Methods. Springer Series 

in Statistics, 

2009. 1993. 

3. R.H Shumway and D.S Sto_er, Time 

Series Analysis and its Applications: with R 

Examples. 

Springer, 2010. 1993. 

Additional support 

Two examples sheets will be provided and 

two associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Monte Carlo Inference (L12) 

Kayvan Sadeghi 



 

 

Monte Carlo methods are concerned with the 

use of stochastic simulation techniques for 

statistical inference. 

These have had an enormous impact on 

statistical practice, especially Bayesian 

computation, over 

the last 20 years, due to the advent of modern 

computing architectures and programming 

languages. This 

course covers the theory underlying some of 

these methods and illustrates how they can be 

implemented 

and applied in practice. The following topics 

will be covered: Techniques of random 

variable generation, 

Monte Carlo integration, Importance 

Sampling, Markov chain Monte Carlo 

(MCMC) methods for 

Bayesian inference, Gibbs sampling, 

Metropolis-Hastings algorithm, reversible 

jump MCMC. 

Monte Carlo methods are concerned with the 

use of stochastic simulation techniques for 

statistical inference. 

These have had an enormous impact on 

statistical practice, especially Bayesian 

computation, over 

the last 20 years, due to the advent of modern 

computing architectures and programming 

languages. This 

course covers the theory underlying some of 

these methods and illustrates how they can be 

implemented 

and applied in practice. The following topics 

will be covered: Techniques of random 

variable generation, 

Monte Carlo integration, Importance 

Sampling, Markov chain Monte Carlo 

(MCMC) methods for 

Bayesian inference, Gibbs sampling, 

Metropolis-Hastings algorithm, reversible 

jump MCMC. 
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Pre-requisites 

You should have attended introductory 

Probability and Statistics courses. A basic 

knowledge of Markov 

chains would be helpful. Prior familiarity 

with a statistical programming package such 

as R or MATLAB 

would also be useful. 

 

Literature 
1. P. J. E. Gentle, Random Number 

Generation and Monte Carlo Methods, 

(Second Edition). Springer, 

2003. 

2. B. D. Ripley, Stochastic Simulation. 

Wiley, 1987. 

3. W.D. Gamerman and H. F. Lopes, Markov 

Chain Monte Carlo: Stochastic Simulation 

for Bayesian 

Inference, (Second Edition). Chapman and 

Hall, 2006. 

4. C.P. Robert and G. Casella, Monte Carlo 

Statistical Methods, (Second Edition). 

Springer, 2004. 

5. 5. C. P. Robert and G. Casella, Introducing 

Monte Carlo Methods with R. Springer, 

2010. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 

Statistics for Stochastic Processes (L16) 

Jakob S • ohl 

This course gives an introduction to inference 

for stochastic processes. Stochastic processes 

are widely 

used for modelling in many _elds and are 

especially popular in _nance. Di_erent 

classes of processes are 

introduced and studied such as di_usions, 

L_evy processes and It^o semimartingales. 

Observations schemes 

include high-frequency and low-frequency 

observations. Estimation procedures focus on 

nonparametric 



 

 

methods for the volatility, the drift, the 

invariant density and the jump measure. The 

convergence rates 

of the estimators are discussed. 

Pre-requisites 

This course assumes knowledge of 

probability theory as covered by the lecture 

Advanced Probability in 

Cambridge, for example of the topic of 

martingales, the construction of Brownian 

motion and its properties. 

Necessary background on stochastic calculus 

will be provided during the course. For a 

throughout 

treatment of stochastic calculus it is advisable 

to attend the lecture Stochastic Calculus and 

Applications 

that is o_ered in lent term as well. A 

familiarity with statistical concepts can be 

useful but is not a 

necessary prerequisite for the course. 

 

Literature 
1. Y.A. Kutoyants, Statistical Inference for 

Ergodic Di_usion Processes. Springer, 2004. 

2. J. S • ohl, Statistics for Stochastic 

Processes. Lecture notes available online, 

2015. 

Additional support 

Two examples sheets will be provided and 

two associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 
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Topics in Statistical Theory (L16) 

Quentin Berthet 

The objective of this course is give an 

introduction to topics in modern statistical 

theory. Important 

problems in high-dimensional and 

nonparametric statistics will be covered, as 

well as some techniques 

used to solve them. Emphasis will be placed 

on theoretical results. 

- Estimation in high dimension: deviation 

bounds, structural assumptions (e.g. sparsity), 

links with 

convex geometry, spectral methods. 

- Minimax theory: notion of information-

theoretic lower bounds, distance and 

divergence between distributions, 

optimal rates. 

- Nonparametric statistics: density estimation, 

regression. 

Pre-requisites 

A good background in probability theory, as 

well as elements of linear algebra and 

functional analysis. A 

preliminary course in mathematical statistics 

can be helpful, but it is not necessary. 

 

Literature 
No book will be explicitly followed, but 

some of the material is covered in 

A. Tsybakov, Introduction to nonparametric 

estimation, Springer 2009 

Additional support 

Three example sheets will be provided and 

associated examples classes will be given. 

There will be a 

revision class in the Easter Term. 

Concentration Inequalities (E16) 

Non-Examinable (Graduate Level) 

St_ephane Boucheron 

Concentration inequalities for functions of 

independent random variables is an area of 

probability theory 

that has witnessed a great revolution in the 

last few decades, and has applications in a 

wide variety of 

areas such as machine learning, statistics, 

discrete mathematics, and high-dimensional 

geometry. Roughly 

speaking, if a function of many independent 

random variables does not depend too much 

on any of the 

variables then it is concentrated in the sense 

that with high probability, it is close to its 

expected value. 



 

 

This course o_ers a host of inequalities to 

illustrate this rich theory. 

It describes the interplay between the 

probabilistic structure (independence) and a 

variety of tools ranging 

from functional inequalities to transportation 

arguments to information theory. 

Applications to the study 

of empirical processes, random projections, 

random matrix theory, and threshold 

phenomena are also 

presented. 

Pre-requisites 

We shall assume notions of probability 

theory. 
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Literature 
1. Boucheron, S., Lugosi, G., & Massart, P. 

(2013). Concentration inequalities: A 

nonasymptotic 

theory of independence. OUP Oxford. 

2. Chatterjee, S. (2014). Superconcentration 

and related topics. Springer. 

3. Garling, D. J. (2007). Inequalities: a 

journey into linear analysis. Cambridge 

University Press. 

4. Ledoux, M. (2005). The concentration of 

measure phenomenon (No. 89). American 

Mathematical 

Soc. 

5. Raginsky, M., Sason, I. (2014). 

Concentration of Measure Inequalities in 

Information Theory, 

Communications, and Coding. Now 

Publishers Inc.. 

6. Tropp, Joel A. An introduction to matrix 

concentration inequalities. arXiv preprint 

arXiv:1501.01571 

(2015). 

http://www.lpma-paris.fr/~boucheron 
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Operational Research and Mathematical 

Finance 

Advanced Financial Models (M24) 

M.R. Tehranchi 

This course is an introduction to _nancial 

mathematics, with a focus on the pricing and 

hedging of 

contingent claims. It complements the 

material in Advanced Probability and 

Stochastic Calculus & 

Applications. 

_ Discrete time models. Filtrations and 

martingales. Arbitrage, martingale deators 

and equivalent 

martingale measures. Attainable claims and 

market completeness. European and 

American claims. 

Optimal stopping. 

_ Brownian motion and stochastic calculus. 

Brief survey of stochastic integration. 

Girsanov's theorem. 

It^o's formula. Martingale representation 

theorem. 

_ Continuous time models. Admissible 

strategies. Black{Scholes model. The implied 

volatility surface. 

Pricing and hedging via partial di_erential 

equations. Dupire's formula. Stochastic 

volatility models. 

_ Interest rate models. Short rates, forward 

rates and bond prices. Markovian short rate 

models. The 

Heath{Jarrow{Morton drift condition. 

Pre-requisites 

Familiarity with measure-theoretic 

probability will be assumed. 

 

Literature 
1. M. Baxter & A. Rennie. Financial 

calculus: an introduction to derivative 

pricing. Cambridge 

University Press, 1996 

2. M. Musiela and M. Rutkowski. Martingale 

Methods in Financial Modelling. Springer, 

2006 

3. D. Kennedy.Stochasic Financial models. 

Chapman & Hall, 2010 



 

 

4. D. Lamberton & B. Lapeyre.Introduction 

to stochastic calculus applied to _nance. 

Chapman & Hall, 

1996 

5. S. Shreve. Stochastic Calculus for Finance: 

Vol. 1 and 2. Springer-Finance, 2005 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Mathematics of Operational Research (M24) 

Richard Weber 

The course covers a selection of 

mathematical tools and models for 

operational research: 

_ Lagrangian su_ciency theorem. Lagrange 

duality. Supporting hyperplane theorem. 

Su_cient conditions 

for convexity of the optimal value function. 

Fundamentals of linear programming. Linear 

program duality. Shadow prices. 

Complementary slackness. [2] 
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_ Simplex algorithm. Two-phase method. 

Dual simplex algorithm. Gomory's cutting 

plane method. 

[3] 

_ Complexity of algorithms. NP-

completeness. Exponential complexity of the 

simplex algorithm. 

Polynomial time algorithms for linear 

programming. [2] 

_ Network simplex algorithm. Transportation 

and assignment problems, Ford-Fulkerson 

algorithm, 

max-ow/min-cut theorem. Shortest paths, 

Bellman-Ford algorithm, Dijkstra's 

algorithm. Minimum 

spanning trees, Prim's algorithm. MAX CUT, 

semide_nite programming, interior point 

methods. 

[5] 

_ Branch and bound. Dakin's method. Exact, 

approximate, and heuristic methods for the 

travelling 

salesman problem. [3] 

_ Cooperative and non-cooperative games. 

Two-player zero-sum games. Existence and 

computation of 

Nash equilibria, Lemke-Howson algorithm. 

Bargaining. Coalitional games, core, 

nucleolus, Shapley 

value. Mechanism design, Arrow's theorem, 

Gibbard-Satterthwaite theorem, VCG 

mechanisms. 

Auctions, revenue equivalence, optimal 

auctions. [9] 

Pre-requisites 

The course is accessible to a candidate with 

mathematical maturity who has no previous 

experience of 

operational research; however it is expected 

that most candidates will already have had 

exposure to some 

of the topics listed above. 

 

Literature 
1. M.S. Bazaraa, J.J. Jarvis and H.D. Sherali: 

Linear Programming and Network Flows, 

Wiley (1988). 

2. D. Bertsimas, J.N. Tsitsiklis. Introduction 

to Linear Optimization. Athena Scienti_c 

(1997). 

3. N. Nisan, T. Roughgarden, E. Tardos, V. 

Vazirani. Algorithmic Game Theory. 

Cambridge University 

Press (2007). 

4. M. Osborne, A. Rubinstein: A Course in 

Game Theory. MIT Press (1994). 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. 

Stochastic Networks (M24) 

Frank Kelly 



 

 

Communication networks underpin our 

modern world, and provide fascinating and 

challenging examples 

of large-scale stochastic systems. This course 

uses stochastic models to shed light on 

important issues in 

the design and control of communication 

networks. 

Randomness arises in communication 

systems at many levels: for example, the 

initiation and termination 

times of calls in a telephone network, or the 

statistical structure of the arrival streams of 

packets at routers 

in the Internet. How can routing, ow control 

and connection acceptance algorithms be 

designed to work 

well in uncertain and random environments? 

And can we design these algorithms using 

simple local rules 

so that they produce coherent and purposeful 

behaviour at the macroscopic level? 

The _rst two parts of the course will describe 

a variety of classical models that can be used 

to help 

understand the performance of large-scale 

stochastic networks. Queueing and loss 

networks will be studied, 

as well as random access schemes and the 

concept of an e_ective bandwidth. Parallels 

will be drawn with 

models from physics, and with models of 

tra_c in road networks. 
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The third part of the course will more 

recently developed models of packet tra_c 

and of congestion 

control algorithms in the Internet. This is an 

area of some practical importance, with 

network operators, 

hardware and software vendors, and 

regulators actively seeking ways of 

delivering new services reliably 

and e_ectively. The complex interplay 

between end-systems and the network has 

attracted the attention 

of economists as well as mathematicians and 

engineers. 

We describe enough of the technological 

background to communication networks to 

motivate our models, 

but no more. Some of the ideas described in 

the book are _nding application in _nancial, 

energy, and 

economic networks as computing and 

communication technologies transform these 

areas. But communication 

networks currently provide the richest and 

best developed area of application within 

which to 

present a connected account of the ideas. 

Pre-requisites 

Mathematics that will be assumed to be 

known before the start of the course: Part IB 

Optimization and 

Markov Chains. Familiarity with Part II 

Applied Probability would be useful, but is 

not assumed. 

Preliminary Reading 

A feeling for some of the ideas of the course 

can be taken from 

The mathematics of tra_c in networks. In 

Princeton Companion to Mathematics 

(Edited by Timothy 

Gowers; June Barrow-Green and Imre 

Leader, associate editors) Princeton 

University Press, 2008. 862- 

870. 

 

Literature 
Reference 3 is the course text. 

1. B. Hajek Communication Network 

Analysis. 

2. F.P. Kelly Reversibility and Stochastic 

Networks. Cambridge University Press, 

2011. 



 

 

3. F. Kelly and E. Yudovina Stochastic 

Networks. Cambridge University Press, 

2014. 

4. R. Srikant and L. Ying Communication 

Networks: An Optimization, Control and 

Stochastic Net- 

works Perspective. Cambridge University 

Press, 2013. 

Additional support 

Examples sheets will be provided and 

associated examples classes will be given. 

There will be a one-hour 

revision class in the Easter Term. 
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Particle Physics, Quantum Fields and Strings 

The courses on Symmetries, Fields and 

Particles, Quantum Field Theory, Advanced 

Quantum Field 

Theory and The Standard Model are intended 

to provide a linked course covering High 

Energy Physics. 

The remaining courses extend these in 

various directions. Knowledge of Quantum 

Field Theory is essential 

for most of the other courses. The Standard 

Model course assumes knowledge of the 

course Symmetries, 

Fields and Particles. 

Desirable previous knowledge 

Basic quantum mechanics, wave functions, 

amplitudes and probabilities. Quantisation in 

terms of commutation 

relations between coordinates q and 

corresponding momenta p. Schr • odinger and 

Heisenberg 

pictures. Dirac bra and ket formalism. 

Harmonic oscillator, its solution using 

creation and annihilation operators. 

Angular momentum operators and their 

commutation relations. Determination of 

possible states jjmi from the basic algebra. 

Idea of spin as well as orbital angular 

momentum. Two body systems. Clebsch- 

Gordan coe_cients for decomposition of 

products of angular momentum states. 

Perturbation theory, degenerate case and to 

second order. Time dependent perturbations, 

`Golden Rule' 

for decay rates. Cross sections, scattering 

amplitudes in quantum mechanics, partial 

wave decomposition. 

Lagrangian formulation of dynamics. Normal 

modes. Familiarity with Lorentz 

transformations and use 

of 4-vectors in special relativity, 4-

momentum p_ for a particle and energy-

momentum conservation in 

4-vector form. Relativistic formulation of 

electrodynamics using F__ = @_A_ � 

@_A_ and Lagrangian 

density L = �1 

4F__F__. 

Basic knowledge of _-functions (including in 

3 dimensions) and Fourier transforms. Basic 

properties of 

groups and the idea of a matrix 

representation. Permutation group. 

The desirable previous knowledge needed to 

tackle the Particle Physics, Quantum Fields 

and Strings 

courses is covered by the following 

Cambridge undergraduate courses. Students 

starting Part III from 

outside might like to peruse the syllabuses on 

the WWW at 

http://www.maths.cam.ac.uk/undergrad/sche

dules/ 

Year Courses 

Second Essential: Quantum Mechanics, 

Methods, Complex Methods. 

Helpful: Electromagnetism. 

Third Essential: Principles of Quantum 

Mechanics, Classical Dynamics. 

Very helpful: Applications of Quantum 

Mechanics, Statistical Physics, 

Electrodynamics. 

If you have not taken the courses equivalent 

to those denoted `essential', then you should 

review the 

relevant material over the vacation. 



 

 

Quantum Field Theory (M24) 

Malcolm J. Perry 

Quantum Field Theory is the language in 

which all of modern physics is formulated. It 

represents the 

marriage of quantum mechanics with special 

relativity and provides the mathematical 

framework in which 

to describe the interactions of elementary 

particles. 

This _rst Quantum Field Theory course 

introduces the basic types of _elds which 

play an important role 

in high energy physics: scalar, spinor (Dirac), 

and vector (gauge) _elds. The relativistic 

invariance and 

symmetry properties of these _elds are 

discussed using Lagrangian language and 

Noether's theorem. 
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The quantisation of the basic non-interacting 

free _elds is _rstly developed using the 

Hamiltonian and 

canonical methods in terms of operators 

which create and annihilate particles and 

anti-particles. The 

associated Fock space of quantum physical 

states is explained together with ideas about 

how particles 

propagate in spacetime and their statistics. 

How these feilds interact with a classical 

electromagnertic 

_eld is described. 

Next, we introduce the path integral which is 

an alternative way of describing quantum 

_elds. The paht 

integral is fundamental in introducing 

interaction into quantum _eld theory. 

Interactions are described 

using perturbative theory and Feynman 

diagrams. This is _rst illustrated for theories 

with a purely 

scalar _eld interaction, and then for a 

couplings between scalar _elds and fermions. 

Finally Quantum 

Electrodynamics, the theory of interacting 

photons, electrons and positrons, is 

introduced and elementary 

scattering processes are computed. 

Finally, the idea of loops in Feynman 

diagrams are explored and the queston of the 

consequent in_nities 

looked at. Ways of dealing with the in_nities 

will be expolored in the Advanced Quantum 

Field Theory 

course which follows on directly from this 

one. 

Pre-requisites 

You will need to be comfortable with the 

Lagrangian and Hamiltonian formulations of 

classical mechanics 

and with special relativity. You will also 

need to have taken an advanced course on 

quantum mechanics. 

 

Literature 
1. M.E. Peskin and D.V. Schroeder, An 

Introduction to Quantum Field Theory, 

Addison-Wesley (1996). 

2. A. Zee, Quantum Field Theory in a 

Nutshell, Princeton University Press, (2010) 

3. M. Srednicki, Quantum Field Theory, 

Cambridge University Press, (2007). (a free 

prelminary version 

is available here 

http://web.physics.ucsb.edu/~mark/ms-qft-

DRAFT.pdf 

4. M. Schwartz, Quantum Field Theory and 

the Standard Model, Cambridge University 

Press (2014). 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

revision class in the Easter Term. 

Symmetries, Fields and Particles (M24) 

N. Dorey 

This course introduces the various types of 

elementary particle { quarks, leptons, gauge 

and Higgs particles 



 

 

{ and the various symmetry groups useful for 

understanding their properties. Some 

symmetries in particle 

physics are exact, and some only 

approximate. The most important symmetry 

groups are speci_c Lie 

groups, including SU(2), SU(3), the Lorentz 

and Poincar_e groups. 

Basic Lie group theory will be covered, 

including Lie algebras and the relation 

between Lie algebras 

and Lie groups. The representation theory of 

SU(2) (closely related to quantum 

mechanical angular 

momentum theory) will be extended to give 

the theory of SU(3) representations. Hadrons, 

the particles 

containing quarks and antiquarks, are 

classi_ed by representations of SU(3) 

because of the approximate 

avour symmetry among quarks. 

The Standard Model of particles is a gauge 

theory, a quantum _eld theory with an exact, 

locally acting 

Lie group symmetry. The structure of gauge 

theory Lagrangians will be introduced, and 

also the Higgs 

mechanism for (spontaneous) symmetry 

breaking and mass generation. 

The course ends with a discussion of the 

Lorentz and Poincar_e groups, and how their 

representations are 

used to classify momentum and spin states of 

relativistic particles. 

54 

The course is designed to be taken in 

conjunction with the Quantum Field Theory 

course, and as a 

preliminary to the Standard Model course, 

although it is formally independent of these. 

Pre-requisites 

Basic _nite group theory, including 

subgroups and orbits. Special relativity and 

quantum theory, including 

orbital angular momentum theory and Pauli 

spin matrices. Basic ideas about manifolds, 

including 

coordinates, dimension, tangent spaces. 

It will be useful to have an outline knowledge 

of elementary particles, as in several books, 

e.g. D.H. 

Perkins, Introduction to High Energy 

Physics, 4th ed., Cambridge University Press, 

2000. 

 

Literature 
1. G. Costa and G. Fogli, Symmetries and 

Group Theory in Particle Physics, Lecture 

Notes in Physics 

823. Springer, 2012. 

2. H.F. Jones, Representations and Physics. 

2nd edition. Taylor and Francis, 1998. 

3. H. Georgi, Lie Algebras in Particle 

Physics. Westview Press, 1999. 

4. J. Fuchs and C. Schweigert, Lie Algebras 

and Representations. Cambridge University 

Press, 2003. 

Additional support 

A set of course notes is available on the Part 

III Examples and Lecture Notes webpage. 

Four examples 

sheets will be provided and four associated 

examples classes in moderate-sized groups 

will be given by 

graduate students. 

Statistical Field Theory (M16) 

M B Wingate 

[Below is the course desciption from 

previous years. This year will follow a 

similar structure, but I may 

decide to make some changes as I write my 

version of the lectures.] 

This course is an introduction to the 

renormalization group, the basis for a modern 

understanding of _eld 

theory, and the construction of e_ective _eld 

theories. The discussion is concerned with 

statistical systems 



 

 

including their relationship with quantum 

_eld theory in its Euclidean formulation. 

The phenomenology of phase transitions is 

reviewed, leading to the introduction of the 

theory of critical 

phenomena. Landau-Ginsburg theory and 

mean _eld theory are presented and applied 

to the Ising model. 

The classi_cation of phase transitions and 

their relationship with critical points is 

presented, and the 

renormalization group is introduced _rst in 

the context of the soluble 1D Ising model and 

then in general. 

The renormalization group is used for 

calculating properties of systems near a phase 

transition, for example 

in the Ising and Gaussian models, and the 

concepts of critical exponents, anomalous 

dimensions, and 

scaling are discussed. 

The idea of the continuum limit for models 

controlled by a critical point and the 

relationship with continuum 

quantum _eld theory is elucidated. 

Perturbation theory is introduced for the 

scalar _eld model with interactions and some 

example calculations 

are presented. 

Pre-requisites 

Background knowledge of Statistical 

Mechanics at an undergraduate level is 

essential. This course complements 

the Quantum Field Theory and Advanced 

Quantum Field Theory courses. 
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Literature 
1. J M Yeomans, Statistical Mechanics of 

Phase Transitions, Clarendon Press (1992). 

2. J J Binney, N J Dowrick, A J Fisher, and 

M E J Newman, The Theory of Critical 

Phenomena, 

Oxford University Press (1992). 

3. M Le Bellac, Quantum and Statistical 

Field Theory, Oxford University Press 

(1991). 

4. M Kardar, Statistical Physics of Fields, 

Cambridge University Press (2007). 

5. D Amit and V Mart__n-Mayor, Field 

Theory, the Renormalization Group, and 

Critical Phenomena, 

3rd edition, World Scienti_c (2005). 

6. C Itzykson and J-M Drou_e, Statistical 

Field Theory, Vols. 1-2, Cambridge 

University Press (1991). 

7. L D Landau and E M Lifshitz, Statistical 

Physics, Pergamon Press (1996). 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. 

Advanced Quantum Field Theory (L24) 

DB Skinner 

Quantum Field Theory (QFT) provides the 

most profound description of Nature we 

currently possess. 

As well as being the basic theoretical 

framework for describing elementary 

particles and their interactions 

(excluding gravity), QFT also plays a major 

role in areas of physics and mathematics as 

diverse as string 

theory, condensed matter physics, topology 

and geometry, astrophysics and cosmology. 

This course builds on the Michaelmas 

Quantum Field Theory course, using 

techniques of path integrals 

and functional methods to study quantum 

gauge theories. Gauge Theories are a 

generalisation of electrodynamics 

and form the backbone of the Standard 

Model - our best theory encompassing all 

particle 

physics. In a gauge theory, _elds have an 

in_nitely redundant description; we can 

transform the _elds by 



 

 

a di_erent element of a Lie Group at every 

point in space-time and yet still describe the 

same physics. 

Quantising a gauge theory requires us to 

eliminate this in_nite redundancy. In the path 

integral approach, 

this is done using tools such as ghost _elds 

and BRST symmetry. We discuss the 

construction of gauge 

theories and their most important 

observables, Wilson Loops. Time permitting, 

we will explore the possibility 

that a classical symmetry may be broken by 

quantum e_ects. Such anomalies have many 

important 

consequences, from constraints on 

interactions between matter and gauge _elds, 

to the ability to actually 

render a QFT inconsistent. 

A further major component of the course is to 

study Renormalization. Wilsons picture of 

Renormalisation 

is one of the deepest insights into QFT { it 

explains why we can do physics at all! The 

essential point is 

that the physics we see depends on the scale 

at which we look. In QFT, this dependence is 

governed by 

evolution along the Renormalisation Group 

(RG) ow. The course explores 

renormalisation systematically, 

from the use of dimensional regularisation in 

perturbative loop integrals, to the di_culties 

inherent in 

trying to construct a quantum _eld theory of 

gravity. We discuss the various possible 

behaviours of a 

QFT under RG ow, showing in particular that 

the coupling constant of a non-Abelian gauge 

theory can 

e_ectively become small at high energies. 

Known as asymptotic freedom, this 

phenomenon revolutionised 

our understanding of the strong interactions. 

We introduce the notion of an E_ective Field 

Theory that 

describes the low energy limit of a more 

fundamental theory and helps parametrise 

possible departures 

from this low energy approximation. From a 

modern perspective, the Standard Model 

itself appears to 

be but an e_ective _eld theory. 

Time permitting, we may also discuss various 

modern topics in QFT, such as dualities, 

localization and 

topological QFTs, 
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Pre-requisites 

Knowledge of the Michaelmas term Quantum 

Field Theory course will be assumed. 

Familiarity with the 

course Symmetries, Fields and Particles 

would be very helpful. 

Preliminary Reading 

1. Zee, A., Quantum Field Theory in a 

Nutshell, 2nd edition, PUP (2010). 

 

Literature 
1. Srednicki, M., Quantum Field Theory, 

CUP (2007). 

2. Weinberg, S., The Quantum Theory of 

Fields, vols. 1 & 2, CUP (1996). 

3. Banks, T. Modern Quantum Field Theory: 

A Concise Introduction, CUP (2008). 

4. Peskin, M. and Schroeder, D., An 

Introduction to Quantum Field Theory, 

Perseus Books (1995). 

Additional support 

There will be four problem sheets handed out 

during the course. Classes for each of these 

sheets will be 

arranged during Lent Term. There will also 

be a general revision class during Easter 

Term. 

Standard Model (L24) 

C.E. Thomas 



 

 

The Standard Model of particle physics is, by 

far, the most successful application of 

quantum _eld theory 

(QFT). At the time of writing, it accurately 

describes all experimental measurements 

involving strong, 

weak, and electromagnetic interactions. The 

course aims to demonstrate how this model, a 

QFT with 

gauge group SU(3)_SU(2)_U(1) and fermion 

_elds for the leptons and quarks, is realised in 

nature. It 

is intended to complement the more general 

Advanced QFT course. 

We begin by de_ning the Standard Model in 

terms of its local (gauge) and global 

symmetries and its 

elementary particle content (spin-half leptons 

and quarks, and spin-one gauge bosons). The 

parity P, 

charge-conjugation C and time-reversal T 

transformation properties of the theory are 

investigated. These 

need not be symmetries manifest in nature; 

e.g. only left-handed particles feel the weak 

force and so it 

violates parity symmetry. We show how CP 

violation becomes possible when there are 

three generations 

of particles and describe its consequences. 

Ideas of spontaneous symmetry breaking are 

applied to discuss the Higgs Mechanism and 

why the weakness 

of the weak force is due to the spontaneous 

breaking of the SU(2) _ U(1) gauge 

symmetry. Recent 

measurements of what appear to be Higgs 

boson decays will be presented. 

We show how to obtain cross sections and 

decay rates from the matrix element squared 

of a process. These 

can be computed for various scattering and 

decay processes in the electroweak sector 

using perturbation 

theory because the couplings are small. We 

touch upon the topic of neutrino masses and 

oscillations, an 

important window to physics beyond the 

Standard Model. 

The strong interaction is described by 

quantum chromodynamics (QCD), the non-

abelian gauge theory of 

the (unbroken) SU(3) gauge symmetry. At 

low energies quarks are con_ned and form 

bound states called 

hadrons. The coupling constant decreases as 

the energy scale increases, to the point where 

perturbation 

theory can be used. As an example we 

consider electron-positron annihilation to 

_nal state hadrons at 

high energies. Time permitting, we will 

discuss nonperturbative approaches to QCD. 

For example, the 

framework of e_ective _eld theories can be 

used to make progress in the limits of very 

small and very 

large quark masses. 

Both very high-energy experiments and very 

precise experiments are currently striving to 

observe e_ects 

that cannot be described by the Standard 

Model alone. If time permits, we comment on 

how the Standard 
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Model is treated as an e_ective _eld theory to 

accommodate (so far hypothetical) e_ects 

beyond the 

Standard Model. 

Pre-requisites 

It is necessary to have attended the Quantum 

Field Theory and the Symmetries, Fields and 

Particles 

courses, or to be familiar with the material 

covered in them. It would be advantageous to 

attend the 

Advanced QFT course during the same term 

as this course, or to study renormalisation 

and non-abelian 



 

 

gauge _xing. 

Reading to complement course material 

1. M.E. Peskin and D.V. Schroeder, An 

Introduction to Quantum Field Theory, 

Addison-Wesley (1995). 

2. H. Georgi, Weak Interactions and Modern 

Particle Theory, Benjamin/Cummings 

(1984). 

3. T-P. Cheng and L-F. Li, Gauge Theory of 

Elementary Particle Physics, Oxford 

University Press 

(1984). 

4. I.J.R. Aitchison and A.J.G. Hey, Gauge 

Theories in Particle Physics, IoP Publishing 

(2012) (two 

volumes or earlier 1989 edition in one 

volume). 

5. F. Halzen and A.D. Martin, Quarks and 

Leptons: An Introductory Course in Modern 

Particle 

Physics, John Wiley and Sons (1984). 

6. J.F. Donoghue, E. Golowich and B.R. 

Holstein, Dynamics of the Standard Model, 

Cambridge University 

Press (1992). 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. 

String Theory (L24) 

Paul K. Townsend 

String Theory supposes that elementary 

particles are excitations of a string, which 

could be open (with 

two endpoints) or closed. Closed strings have 

a massless spin-2 particle in their spectrum, 

which suggests 

that String Theory is a theory of quantum 

gravity. Open strings yield analogous 

generalisations of gauge 

theory, so a theory of open and closed strings 

is potentially one that can unify gravity with 

the forces of the 

standard model of particle physics. This 

course will introduce the strings of string 

theory as constrained 

Hamiltonian systems, focusing initially on 

the Nambu-Goto (NG) string, and using 

extensively the insights 

provided by a similar investigation of the 

relativistic point particle. It will be seen that 

the NG string is 

a gauge theory of the (in_nite-dimensional) 

2D conformal group. 

Various methods of quantisation of the NG 

string, including light-cone gauge, and \old 

covariant" (and 

possibly BRST); this will reveal that there is 

a critical space-time dimension (26) and that 

the ground state 

is a tachyon. A study of the possible 

boundary conditions on open strings will 

suggest an interpretation 

in terms of branes. Superstring theory will be 

introduced, in the RNS formalism, as a 

\square-root" of 

the NG string. The light-cone gauge will be 

used to show that the the critical dimension is 

10. It will be 

explained briey why superstring theories are 

tachyon-free and why there are _ve of them. 

The path integral formulation of QM will be 

explained, and why you don't need _elds to 

do QFT. The 

generalisation to strings will lead to ideas of 

conformal _eld theory, a computation of the 

Virasoro-Shapiro 

amplitude for the scattering of closed-string 

tachyons of the NG string, and a discussion 

of some general 

features of string perturbation theory. This 

will include a look at the \one-loop" quantum 

corrections 

and why there are no UV divergences. Other 

topics that may be discussed are T-duality 

and how the _ve 

superstring theories are uni_ed by \M-

Theory". 



 

 

58 

Pre-requisites 

This course assumes you know the basics of 

(i) Special Relativity and (ii) Quantum 

Mechanics. Complete 

typed course notes will be provided. The 

course structure is rather di_erent from 

anything that can be 

found in text books or on-line reviews but the 

following are useful for general background 

and/or speci_c 

topics covered in the course: 

 

Literature 
1. Green, Schwarz and Witten, Superstring 

Theory: Vol. 1:Introduction CUP 1987. 

2. Brink and Henneaux, Principles Of String 

Theory, Plenum 1988. 

3. L• ust and Theisen, Lecture Notes in 

Physics: Superstring Theory, Springer 1989. 

4. Gleb Arutyanov, Lectures on String 

Theory, e-booksdirectory.com 

5. David Tong, String Theory, 

arXiv:0908.0333 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will also 

be a weekly o_ce hour during the Lent term 

for questions about the lectures. 

Supersymmetry (L16) 

F. Quevedo 

This course provides an introduction to the 

use of supersymmetry in quantum _eld 

theory. Supersymmetry 

combines commuting and anti-commuting 

dynamical variables and relates fermions and 

bosons. 

Firstly, a physical motivation for 

supersymmetry is provided. The 

supersymmetry algebra and representations 

are then introduced, followed by super_elds 

and superspace. 4-dimensional 

supersymmetric 

Lagrangians are then discussed, along with 

the basics of supersymmetry breaking. The 

minimal supersymmetric 

standard model will be introduced. If time 

allows a short discussion of supersymmetry 

in 

higher dimensions will be briey discussed. 

Three examples sheets and examples classes 

will complement the course. 

Pre-requisites 

It is necessary to have attended the Quantum 

Field Theory and the Symmetries in Particle 

Physics courses, 

or be familiar with the material covered in 

them. 

Preliminary Reading 

1. The _rst chapters of 

http://arxiv.org/abs/hep-ph/0505105 

 

Literature 
For more advanced topics later in the course, 

it will helpful to have a knowledge of 

renormalisation, as 

provided by the Advanced Quantum Field 

Theory course. It may also be helpful (but not 

essential) to be 

familiar with the structure of The Standard 

Model in order to understand the _nal lecture 

on the minimal 

supersymmetric standard model. 

Beware: most of the supersymmetry 

references contain errors in minus signs, 

aside (as far as I know) Wess 

and Bagger. 
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1. Course lecture notes from last year: 

http://www.damtp.cam.ac.uk/user/examples/

3P7.pdf 

2. Videos of a very similar lecture course: 

follow the links from 

http://users.hepforge.org/~allanach/teaching.

html 

3. Supersymmetric Gauge Field Theory and 

String Theory, Bailin and Love, IoP 

Publishing (1994) has 



 

 

nice explanations of the physics. An erratum 

can be found at 

http://www.phys.susx.ac.uk/~mpfg9/susyerta.

htm 

4. Introduction to supersymmetry, J.D. 

Lykken, hep-th/9612114. This introduction is 

good for extended 

supersymmetry and more formal aspects. 

5. Supersymmetry and Supergravity, Wess 

and Bagger, Princeton University Press 

(1992). Note that 

this terse and more mathematical book has 

the opposite sign of metric to the course. 

6. A supersymmetry primer, S.P. Martin, 

hep-ph/9709256 is good and detailed for 

phenomenological 

aspects, although with the opposite sign 

metric to the course. 

Classical and Quantum Solitons (E16) 

N. S. Manton 

Solitons are solutions of classical _eld 

equations with particle-like properties. They 

are localised in space, 

have _nite energy and are stable against 

decay into radiation. The stability usually has 

a topological 

explanation. After quantisation, they give rise 

to new particle states in the underlying 

quantum _eld 

theory that are not seen in perturbation 

theory. We will focus mainly on kink solitons 

in one space 

dimension, and on Skyrmions in three 

dimensions. Solitons in gauge theories will 

also be mentioned. 

Pre-requisites 

This course assumes you have taken 

Quantum Field Theory and Symmetries, 

Fields and Particles. The 

small amount of topology that is needed will 

be developed during the course. 

 

Literature 
1. N. Manton and P. Sutcli_e, Topological 

Solitons. C.U.P., 2004 (Chapters 1,3,4,5,9). 

2. R. Rajaraman, Solitons and Instantons. 

North-Holland, 1987. 

3. A. Vilenkin and E.P.S. Shellard, Cosmic 

Strings and other Topological Defects. 

C.U.P., 1994 (Chapter 

3). 

Additional support 

Two examples sheets will be provided and 

two associated examples classes will be 

given. 
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Relativity and Gravitation 

These courses provide a thorough 

introduction to General Relativity and 

Cosmology. The Michaelmas 

term courses introduce these subjects, which 

are then developed in more detail in the Lent 

term courses 

on Black Holes and Advanced Cosmology. 

Applications of Di_erential Geometry to 

Physics explains how 

many physical theories can be formulated 

elegantly using the language of di_erential 

geometry. Nonexaminable 

courses explore more advanced topics. 

Desirable previous knowledge 

Su_x notation, vector and tensor analysis. 

Variational principle and Lagrangian 

formulation of dynamics. 

Familiarity with Lorentz transformations and 

use of 4-vectors in special relativity, 4-

momentum p_ for a 

particle and energy-momentum conservation 

in 4-vector form. Relativistic formulation of 

electrodynamics 

using F__ = @_A_ � @_A_ and Lagrangian 

density L = �1 

4F__F__. 

Knowledge of basic mathematical methods, 

including Fourier transforms, normal modes, 

and _-function 

(including 3-dimensions). Basic quantum 

mechanics, wave functions, amplitudes and 

probabilities. Familiarity 



 

 

with aspects of statistical physics and 

thermodynamics, including notions of 

thermal equilibrium, 

entropy, black body radiation, and Fermi-

Dirac, Bose-Einstein and Boltzmann 

distributions. 

The desirable previous knowledge needed to 

tackle the Relativity and Gravitation courses 

is covered by 

the following Cambridge undergraduate 

courses. Students starting Part III from 

outside might like to 

peruse the syllabuses on the WWW at 

http://www.maths.cam.ac.uk/undergrad/sche

dules/ 

Year Courses 

First Essential: Vectors & Matrices, Di_. Eq., 

Vector Calculus, Dynamics & Relativity. 

Second Essential: Methods, Quantum 

Mechanics, Variational Principles. 

Helpful: Electromagnetism, Geometry, 

Complex Methods. 

Third Essential: Classical Dynamics. 

Very helpful: General Relativity, Stat. Phys., 

Electrodynamics, Cosmology. 

Helpful: Further Complex Methods, 

Asymptotic methods. 

If you have not taken the courses equivalent 

to those denoted `essential', then you should 

review the 

relevant material over the vacation. 

General Relativity (M24) 

Ulrich Sperhake 

General Relativity is the theory of space-time 

and gravitation proposed by Einstein in 1915. 

It remains 

at the centre of theoretical physics research, 

with applications ranging from astrophysics 

to string theory. 

This course will introduce the theory using a 

modern, geometric, approach. 

Course website: 

http://www.damtp.cam.ac.uk/user/us248/Lect

ures/lectures.html 

Pre-requisites 

This course will be self-contained, so 

previous knowledge of General Relativity is 

not essential. However, 

many students have already taken an 

introductory course in General Relativity 

(e.g. the Part II course). 

If you have not studied GR before, then it is 

strongly recommended that you study an 

introductory book 

(e.g. Hartle or Schutz) before attending this 

course. Certain topics usually covered in a 

_rst course, e.g. the 

solar system tests of GR, will not be covered 

in this course. 
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Familiarity with Newtonian Gravity and 

special relativity is essential. Knowledge of 

the relativistic 

formulation of electrodynamics is desirable. 

Familiarity with _nite-dimensional vector 

spaces, the calculus 

of functions f : Rm ! Rn, and the Euler-

Lagrange equations will be assumed. 

Preliminary Reading 

1. J. B. Hartle,An introduction to Einstein's 

General Relativity. Addison-Wesley, 2003. 

2. B. Schutz,A First Course in General 

Relativity. Cambridge University Press, 

2009. 

 

Literature 
1. R. M. Wald,General Relativity. University 

of Chicago Press, 1984. 

2. S. M. Carroll,Spacetime and Geometry: 

An Introduction to General Relativity. 

Addison-Wesley, 

2004. 

3. J. M. Stewart,Advanced General 

Relativity. Cambridge University Press, 

1993. 

4. L. Ryder,Introduction to General 

Relativity. Cambridge University Press, 

2009. 

5. E. Gourgoulhon,3+1 Formalism and Bases 

of Numerical Relativity. 



 

 

http://arxiv.org/abs/gr-qc/0703035 . 

Chapter 1 of John Stewart's book gives a 

concise overview of di_erential geometry 

which also guides this 

part of the course. Carroll's and Ryder's 

books are very readable introductions. 

Gourgoulhon's notes 

provide a comprehensive overview of the 

space-time split of general relativity. Wald's 

book discusses 

many advanced topics; very suitable for 

obtaining comprehensive treatment on 

isolated topics. 

Additional support 

Three examples sheets will be provided and 

four associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 

Course website: 

http://www.damtp.cam.ac.uk/user/us248/Lect

ures/lectures.html 

Cosmology (M24) 

James Fergusson, David Marsh 

This course covers the last 13.8 billion years 

of the evolution of your universe, from the 

initial inationary 

quantum perturbations to the creation of 

galaxies we observe today. The course will 

follow the following 

format 

1. Geometry and Dynamics 

2. Ination 

3. Cosmological Perturbation Theory 

4. Structure Formation 

5. Thermal History 

6. Initial Conditions from Ination 
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Pre-requisites 

This course is taught in a self contained 

manner so could be attempted by any 

su_ciently keen part III 

student but some basic knowledge of 

Relativity, Quantum Mechanics and 

Statistical Mechanics will likely 

be quite helpful. 

 

Literature 
1. Dodelson, Modern Cosmology 

2. Kolb and Turner, The Early Universe 

3. Weinberg, Cosmology 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. 

Black Holes (L24) 

Harvey Reall 

A black hole is a region of space-time that is 

causally disconnected from the rest of the 

Universe. The 

study of black holes reveals many surprising 

and beautiful properties, and has profound 

consequences for 

quantum theory. The following topics will be 

discussed: 

1. Upper mass limit for relativistic stars. 

Schwarzschild black hole. Gravitational 

collapse. 

2. The initial value problem, strong cosmic 

censorship. 

3. Causal structure, null geodesic 

congruences, Penrose singularity theorem. 

4. Penrose diagrams, asymptotic atness, weak 

cosmic censorship. 

5. Reissner-Nordstrom and Kerr black holes. 

6. Energy, angular momentum and charge in 

curved spacetime. 

7. The laws of black hole mechanics. The 

analogy with laws of thermodynamics. 

8. Quantum _eld theory in curved spacetime. 

The Hawking e_ect and its implications. 

Pre-requisites 

Familiarity with the Michaelmas term 

courses General Relativity and Quantum 

Field Theory is essential. 

 

Literature 
1. H. S. Reall, Part 3 Black Holes: lecture 

notes available at 

www.damtp.cam.ac.uk/user/hsr1000 



 

 

2. R.M. Wald, General relativity, University 

of Chicago Press, 1984. 

3. S.W. Hawking and G.F.R. Ellis, The large 

scale structure of space-time, Cambridge 

University Press, 

1973. 

4. V.P. Frolov and I.D. Novikov, Black holes 

physics, Kluwer, 1998. 

5. N.D. Birrell and P.C.W. Davies, Quantum 

_elds in curved space, Cambridge University 

Press, 1982. 

6. R.M. Wald, Quantum _eld theory in 

curved spacetime and black hole 

thermodynamics, University of 

Chicago Press, 1994. 
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Additional support 

Four examples sheets will be distributed 

during the course. Four examples classes will 

be held to discuss 

these. A revision class will be held in the 

Easter term. 

Advanced Cosmology (L24) 

Paul Shellard and Anthony Challinor 

This course will take forward at much greater 

depth some of the topics in modern 

cosmology covered in 

the Michaelmas Term course. The prediction 

from fundamental theory for the statistical 

properties of 

the primordial perturbations remains the key 

area of confrontation with cosmological 

observations, both 

from large-scale structure and the cosmic 

microwave background (CMB). This course 

will develop the 

mathematical tools and physical 

understanding necessary for research in this 

very active area. 

Cosmological perturbation theory 

_ The 3 + 1 formalism and the Einstein 

equations 

_ Linearised Einstein equations for an 

expanding universe 

_ Review of density perturbation theory, 

transfer functions etc. 

_ Statistics of random _elds 

Cosmic microwave background 

_ Relativistic kinetic theory 

_ The Boltzmann equation 

_ The CMB temperature power spectrum 

_ Photon scattering and di_usion 

_ Primordial gravitational waves and the 

CMB 

_ CMB Polarization 

Topical issues: Inationary theory and non-

Gaussianity 

_ \In-in" formalism and higher-order 

correlation functions 

_ Non-Gaussianities from alternative 

inationary models 

_ Observational non-Gaussianity: CMB and 

large-scale structure 

Pre-requisites 

Material from the Michaelmas term 

Cosmology is essential. Familiarity with 

introductory Quantum Field 

Theory is recommended. 
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Literature 
Textbooks 

1. Dodelson, S., Modern Cosmology, 

Elsevier (2003). 

2. Mukhanov, V., Physical Foundation of 

Cosmology, Cambridge (2005). 

3. Weinberg, S., Cosmology, Oxford 

University Press (2008). 

4. Misner, C.W., Thorne, K.S., and Wheeler, 

J.A., Gravitation, Freeman (1973). 

5. Durrer, R., The Cosmic Microwave 

Background, Cambridge (2008). 

Useful references 

1. Bardeen, J.M., Cosmological Perturbations 

From Quantum Fluctuations To Large Scale 

Structure, 

DOE/ER/40423-01-C8 Lectures given at 2nd 

Guo Shou-jing Summer School on Particle 

Physics 



 

 

and Cosmology, Nanjing, China, Jul 1988. 

(Available on request.) 

2. Mukhanov, V.F., Feldman, H.A., and 

Brandenberger, R.H., Theory of 

cosmological perturbations, 

Physics Reports, 215, 203 (1992). 

3. Ma, C., and Bertschinger, E., 

Cosmological Perturbation Theory in 

Synchronous and Conformal 

Newtonian Gauges, Astrophysical Journal, 

455, 7 (1995) [astro-ph/9506072]. 

4. Hu, W. and White, M., CMB anisotropies: 

Total angular momentum method, Physical 

Review D, 

56, 596 (1997) [astro-ph/9702170]. 

5. Hu, W. and White, M., A CMB 

polarization primer, New Astronomy, 2, 323 

(1997) [astro-ph/97006147]. 

6. Maldacena, J., Non-gaussian features of 

primordial uctuations in single _eld 

inationary models, 

Journal of High Energy Physics, 5, 13 

(2003). 

7. Chen, X., Primordial Non-Gaussianities 

from Ination Models [arxiv:1002.1416]. 

8. Wang, Yi., Ination, Cosmic Perturbations 

and Non-Gaussianities , arXiv:1303.1523 

(Conference 

Lecture Notes). 

9. Ligouri, M., Sefusatti, E., Fergusson, J.R., 

and Shellard, E.P.S., Primordial Non-

Gaussianity and 

Bispectrum Measurements in the Cosmic 

Microwave Background and Large-Scale 

Structure, Advances 

in Astronomy, 2010, 73 (2010) 

[arxiv:1001.4707] 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Applications of Di_erential Geometry to 

Physics. (L16) 

Maciej Dunajski 

This is a course designed to develop the 

Di_erential Geometry required to follow 

modern developments 

in Theoretical Physics. The following topics 

will be discussed. 

_ Di_erential Forms and Vector Fields. 

1. One parameter groups of transformations. 

2. Vector _elds and Lie brackets. 
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3. Exterior algebra. 

4. Hodge Duality. 

_ Geometry of Lie Groups. 

1. Group actions on manifolds. 

2. Homogeneous spaces and Kaluza Klein 

theories. 

3. Metrics on Lie Groups. 

_ Fibre bundles and instantons. 

1. Principal bundles and vector bundles. 

2. Connection and Curvature. 

3. Twistor space. 

Pre-requisites 

Basic General Relativity (Part II level) or 

some introductory Di_erential Geometry 

course (e.g. Part II 

di_erential geometry) is essential. Part III 

General Relativity is desirable. 

 

Literature 
1. 

http://www.damtp.cam.ac.uk/research/gr/me

mbers/gibbons/gwgPartIII_DGeometry2011-

1.pdf 

2. Flanders, H. Di_erential Forms. Dover 

3. Dubrovin, B., Novikov, S. and Fomenko, 

A. Modern Geometry. Springer 

4. Eguchi, T., Gilkey, P. and Hanson. A. J. 

Physics Reports 66 (1980) 213-393 

5. Arnold. V. Mathematical Methods of 

Classical Mechanics. Springer. 

6. Dunajski. M. Solitons, Instantons and 

Twistors. OUP. 

Additional support 

Two examples sheets will be provided and 

two associated examples classes will be 

given. 



 

 

Spinor Techniques in General Relativity 

(L24) 

Non-Examinable (Graduate Level) 

Irena Borzym (12 Lectures) and Peter 

O'Donnell (12 Lectures) 

Spinor structures and techniques are an 

essential part of modern mathematical 

physics. This course 

provides a gentle introduction to spinor 

methods which are illustrated with reference 

to a simple 2-spinor 

formalism in four dimensions. Apart from 

their role in the description of fermions, 

spinors also often 

provide useful geometric insights and 

consequent algebraic simpli_cations of some 

calculations which are 

cumbersome in terms of spacetime tensors. 

The _rst half of the course will include an 

introduction to spinors illustrated by 2-

spinors. Topics covered 

will include the conformal group on 

Minkowski space and a discussion of 

conformal compacti_cations, 

geometry of scri, other simple simple 

geometric applications of spinor techniques, 

zero rest mass _eld 

equations, Petrov classi_cation, the Plucker 

embedding and a comparison with Euclidean 

spacetime. More 
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speci_c references will be provided during 

the course and there will be worked examples 

and handouts 

provided during the lectures. 

The second half of the course will include: 

Newman-Penrose (NP) spin coe_cient 

formalism, NP _eld 

equations, NP quantities under Lorentz 

transformations, Geroch-Held-Penrose 

(GHP) formalism, modi_ed 

GHP formalism, Goldberg-Sachs theorem, 

Lanczos potential theory, Introduction to 

twistors. There will 

be no problem sets. 

Pre-requisites 

The Part 3 general relativity course is a 

prerequisite. 

No prior knowledge of spinors will be 

assumed. 

 

Literature 
Introductory material. 

1. L. P. Hughston and K. P. Tod, Introduction 

to General Relativity. Freeman, 1990. 

2. C.W. Misner, K.S. Thorne and J.A. 

Wheeler, Gravitation. Freeman, 1973. 

Best Course Reference Text for Lectures 1 to 

12. 

J.M. Stewart, Advanced General Relativity. 

CUP, 1993. 

Best Course Reference Text for Lectures 13 

to 24. 

P O'Donnell, Introduction to 2-spinors in 

general relativity. World Scienti_c, 2003. 

Reading to complement course material. 

1. Penrose and Rindler, Spinors and 

Spacetime Volume 1. Cambridge 

Monographs on Mathematical 

Physics, 1987. 

2. S. Ward and Raymond O. Wells, Twistor 

Geometry and Field theory. Cambridge 

Monographs on 

Mathematical Physics, 1991 . 

3. Robert J. Baston, Michael G. Eastwood, 

The Penrose Transform. Clarendon Press, 

1989. 

4. S. A Huggett and P. Tod, Introduction to 

Twistor Theory. World Scienti_c, 2003. 

5. R.M. Wald, General Relativity. World 

Chicago UP, 1984. 

6. S.W. Hawking and G.F.R. Ellis, The Large 

Scale Structure of Spacetime. CUP, 1973. 

Overdetermined PDEs (E8) 

Non-Examinable (Graduate Level) 

Maciej Dunajski 

The course will cover the Frobenius 

Theorem, involutivity, the Cartan Kahler 

theory, and a geometric 



 

 

take on the method of characteristics. There 

will be examples from projective and 

Riemannian geometry, 

as well as mathematical physics. 

Pre-requisites 

A basic course in either Di_erential 

Geometry, Geometry of Surfaces, or General 

Relativity. 
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Literature 
1. Bryant R. L., Chern S. S., Gardner R. B., 

Goldschmidt H. L. Gri_ths P. A., (1991) 

Exterior 

di_erential systems, Mathematical Sciences 

Research Institute Publications, 18, Springer-

Verlag, 

New York. 

2. Ivey, T. A. Landsberg, J. M. (2003) Cartan 

for Beginners: Di_erential Geometry via 

Moving Frames 

and Exterior Di_erential Systems, AMS. 

3. Dunajski, M. (2009) Solitons, Instantons 

Twistors. Oxford Graduate Texts in 

Mathematics, Oxford 

University Press. 

4. Bryant, R. (2014) Notes on exterior 

di_erential system arXiv:1405.3116. 
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Astrophysics 

Introduction to Astrophysics courses 

These courses provide a broad introduction to 

research in theoretical astrophysics; they are 

taken by 

students of both Part III Mathematics and 

Part III Astrophysics. The courses are mostly 

self-contained, 

building on knowledge that is common to 

undergraduate programmes in theoretical 

physics and applied 

mathematics. For speci_c pre-requisites 

please see the individual course descriptions. 

Astrophysical Fluid Dynamics (M24) 

Gordon Ogilvie 

Fluid dynamics is involved in a very wide 

range of astrophysical phenomena, such as 

the formation and 

internal dynamics of stars and giant planets, 

the workings of jets and accretion discs 

around stars and 

black holes, and the dynamics of the 

expanding Universe. E_ects that can be 

important in astrophysical 

uids include compressibility, self-gravitation 

and the dynamical inuence of the magnetic 

_eld that is 

`frozen in' to a highly conducting plasma. 

The basic models introduced and applied in 

this course are Newtonian gas dynamics and 

magnetohydrodynamics 

(MHD) for an ideal compressible uid. The 

mathematical structure of the governing 

equations 

and the associated conservation laws will be 

explored in some detail because of their 

importance for both 

analytical and numerical methods of solution, 

as well as for physical interpretation. Steady 

solutions with 

spherical or axial symmetry reveal the 

physics of winds and jets from stars and 

discs. The linearized equations 

determine the oscillation modes of 

astrophysical bodies, as well as determining 

their stability and 

their response to tidal forcing. The aim of the 

course is to provide familiarity with the basic 

phenomena 

and techniques that are of general relevance 

to astrophysics. Wherever possible the 

emphasis will be on 

simple examples, physical interpretation and 

application of the results in astrophysical 

contexts. 

Provisional synopsis 

_ Overview of astrophysical uid dynamics 

and its applications. 



 

 

_ Equations of ideal gas dynamics and MHD, 

including compressibility, thermodynamic 

relations and 

self-gravitation. 

_ Physical interpretation of ideal MHD, with 

examples of basic phenomena. 

_ Conservation laws, symmetries and 

hyperbolic structure. Stress tensor and virial 

theorem. 

_ Linear waves in homogeneous media. 

Nonlinear waves, shocks and other 

discontinuities. 

_ Spherically symmetric steady ows: stellar 

winds and accretion. 

_ Axisymmetric rotating magnetized ows: 

astrophysical jets. 

_ Stellar oscillations. Introduction to 

asteroseismology and astrophysical tides. 

_ Local dispersion relation. Internal waves 

and instabilities in strati_ed rotating 

astrophysical bodies. 

Pre-requisites 

This course is suitable for both 

astrophysicists and uid dynamicists. An 

elementary knowledge of uid 

dynamics, thermodynamics and 

electromagnetism will be assumed. 
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Literature 
1. Choudhuri, A. R. (1998). The Physics of 

Fluids and Plasmas. Cambridge University 

Press. 

2. Landau, L. D., & Lifshitz, E. M. (1987). 

Fluid Mechanics, 2nd ed. 

Butterworth{Heinemann. 

3. Pringle, J. E., & King, A. R. (2007). 

Astrophysical Flows. Cambridge University 

Press. Available 

as an e-book from 

http://ebooks.cambridge.org 

4. Shu, F. H. (1992). The Physics of 

Astrophysics, vol. 2: Gas Dynamics. 

University Science Books. 

5. Thompson, M. J. (2006). An Introduction 

to Astrophysical Fluid Dynamics. Imperial 

College Press. 

Additional support 

Four example sheets will be provided and 

four associated classes will be given by the 

lecturer. It is 

anticipated that extended notes supporting the 

lecture course will be available in electronic 

form. There 

will be a revision class in Easter Term. 

Extrasolar Planets: Atmospheres and 

Interiors (M24) 

Nikku Madhusudhan 

The _eld of extrasolar planets (or 

`exoplanets') is one of the most dynamic 

frontiers of modern astronomy. 

Exoplanets are planets orbiting stars beyond 

the solar system. Thousands of exoplanets are 

now known 

with a wide range of sizes, temperatures, and 

orbital parameters, covering all the categories 

of planets 

in the solar system (gas giants, ice giants, and 

rocky planets) and more. The _eld is now 

moving into 

a new era of Exoplanet Characterization, 

which involves understanding the 

atmospheres, interiors, and 

formation mechanisms of exoplanets, and 

ultimately _nding potential biosignatures in 

the atmospheres 

of rocky exoplanets. These e_orts are aided 

by both high-precision spectroscopic 

observations as well as 

detailed theoretical models of exoplanets. 

The present course will cover the theory and 

observations of exoplanetary atmospheres 

and interiors. 

Topics in theory will include (1) 

physicochemical processes in exoplanetary 

atmospheres (e.g. radiative 

transfer, energy transport, temperature 

pro_les and stratospheres, equilibrium/non-

equilibrium chemistry, 



 

 

atmospheric dynamics, clouds/hazes, etc) (2) 

models of exoplanetary atmospheres and 

observable 

spectra (1-D and 3-D self-consistent models, 

as well as parametric models and retrieval 

techniques) (3) 

exoplanetary interiors (equations of state, 

mass-radius relations, and internal structures 

of giant planets, 

super-Earths, and rocky exoplanets), and (4) 

relating atmospheres and interiors to planet 

formation. 

Topics in observations will cover observing 

techniques and state-of-the-art instruments 

used to observe 

exoplanetary atmospheres of all kinds. The 

latest observational constraints on all the 

above-mentioned 

theoretical aspects will be discussed. The 

course will also include a discussion on 

detecting biosignatures 

in rocky exoplanets, the relevant theoretical 

constructs and expected observational 

prospects with future 

facilities. 

Pre-requisites 

The course material should be accessible to 

students in physics or mathematics at the 

masters and doctoral 

level, and to astronomers and applied 

mathematicians in general. Knowledge of 

basic radiative transfer 

and chemistry is preferable but not necessary. 

The course is self contained and basic 

concepts will be 

introduced for completeness. 
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Literature 
1. Chapters on exoplanetary atmospheres and 

interiors in the book Protostars and Planets 

VI, University 

of Arizona Press (2014), eds. H. Beuther, R. 

Klessen, C. Dullemond, Th. Henning. Most 

of 

these chapters are available publicly on the 

astro-ph arXiv. 

2. Seager, S., Exoplanet Atmospheres: 

Physical Processes, Princeton Series in 

Astrophysics (2010). 

3. Exoplanets, University of Arizona Press 

(2011), ed. S. Seager. 

4. de Pater, I. and Lissauer J., Planetary 

Sciences, Cambridge University Press 

(2010). 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 

Planetary System Dynamics (M24) 

Mark Wyatt 

This course will cover the principles of 

celestial mechanics and their application to 

the Solar System and 

to extrasolar planetary systems. These 

principles have been developed over the 

centuries since the time 

of Newton, but this _eld continues to be 

invigorated by ongoing observational 

discoveries in the Solar 

System, such as the reservoir of comets in the 

Kuiper belt, and by the rapidly growing 

inventory of(well 

over 1000) extrasolar planets and debris discs 

that are providing new applications of these 

principles and 

the emergence of a new set of dynamical 

phenomena. The course will consider 

gravitational interactions 

between components of all sizes in planetary 

systems (i.e., planets, asteroids, comets and 

dust) as well as 

the e_ects of collisions and other perturbing 

forces. The resulting theory has numerous 

applications that 

will be elaborated in the course,including the 

growth of planets in the protoplanetary disc, 

the dynamical 



 

 

interaction between planets and how their 

orbits evolve, the sculpting of debris discs by 

interactions with 

planets and the destruction of those discs in 

collisions, and the evolution of 

circumplanetary ring and 

satellite systems. 

Speci_c topics to be covered include: 

1. Planetary system architecture: overview of 

Solar System and extrasolar systems, 

detectability, planet 

formation 

2. Two-body problem: equation of motion, 

orbital elements, barycentric motion, Kepler's 

equation, 

perturbed orbits 

3. Small body forces: stellar radiation, optical 

properties, radiation pressure, Poynting-

Robertson drag, 

planetocentric orbits, stellar wind drag, 

Yarkovsky forces, gas drag, motion in 

protoplanetary disc, 

minimum mass solar nebula, settling, radial 

drift 

4. Three-body problem: restricted equations 

of motion, Jacobi integral, Lagrange 

equilibrium points, 

stability, tadpole and horseshoe orbits 

5. Close approaches: hyperbolic orbits, 

gravity assist, patched conics, escape 

velocity, gravitational 

focussing, dynamical friction, Tisserand 

parameter, cometary dynamics, Galactic tide 

6. Collisions: accretion, coagulation equation, 

runaway and oligarchic growth, isolation 

mass, viscous 

stirring, collisional damping, fragmentation 

and collisional cascade, size distributions, 

collision rates, 

steady state, long term evolution, e_ect of 

radiation forces 

7. Disturbing function: elliptic expansions, 

expansion using Legendre polynomials and 

Laplace coe_- 

cients, Lagrange's planetary equations, 

classi_cation of arguments 
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8. Secular perturbations: Laplace coe_cients, 

Laplace-Lagrange theory, test particles, 

secular resonances, 

Kozai cycles, hierarchical systems 

9. Resonant perturbations: geometry of 

resonance, physics of resonance, pendulum 

model, libration 

width, resonant encounters and trapping, 

evolution in resonance, asymmetric libration, 

resonance 

overlap 

Pre-requisites 

This course is self-contained. 

 

Literature 
1. Murray C. D. and Dermott S. F.,Solar 

System Dynamics. Cambridge University 

Press,1999. 

2. Armitage P. J., Astrophysics of Planet 

Formation. Cambridge University Press, 

2010. 

3. de Pater I. and Lissauer J. J., Planetary 

Sciences. Cambridge University Press, 2010. 

4. Valtonen M. and Karttunen H., The Three-

Body Problem. Cambridge University Press, 

2006. 

5. Seager S., Exoplanets. University of 

Arizona Press, 2011. 

6. Perryman M., The Exoplanet Handbook. 

Cambridge University Press, 2011. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

one-hour revision class in the Easter Term. 

Structure and Evolution of Stars (M24) 

A.N.Z_ ytkow 

Our attempts at gaining insight into the 

structure and evolution of stars rely on a 

mathematical description 



 

 

of the physical processes which determine 

the nature of stars. Such a mathematical 

description naturally 

follows the laws of conservation of mass, 

momentum and energy. The basic equations 

for spherical stars 

will be derived and boundary conditions 

described. These basic equations have to be 

supplemented by 

a number of appropriately chosen equations 

describing the methods of energy transport, 

the equation of 

state, the physics of opacity and nuclear 

reactions, all of which will be discussed. 

Some familiarity with 

the principles of hydrodynamics, 

thermodynamics, quantum mechanics, atomic 

and nuclear physics will 

be assumed. 

Approximate solutions of the equations will 

be shown; polytropic gas spheres, homology 

principles, the 

virial theorem will be presented. The 

evolution of a star will be discussed, starting 

from the main-sequence, 

following the stages in which various nuclear 

fuels are exhausted and leading to the _nal 

outcome as white 

dwarfs, neutron stars or black holes. 

The only way in which we may test stellar 

structure and evolution theory is through 

comparison of the 

theoretical results to observations. 

Throughout the course, reference will be 

made to the observational 

properties of the stars, with particular 

reference to the Hertzsprung-Russell 

diagram, the mass-luminosity 

law and spectroscopic information. 

Pre-requisites 

At least a basic understanding of 

hydrodynamics, electromagnetic theory, 

thermodynamics, quantum 

mechanics, atomic and nuclear physics 

although a detailed knowledge of all of these 

is not expected. 
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Preliminary Reading 

1. Shu, F. The Physical Universe, W. H. 

Freeman University Science Books, 1991. 

2. Phillips, A. The Physics of Stars, Wiley, 

1999. 

 

Literature 
1. Kippenhahn, R. and Weigert, A. Stellar 

Structure and Evolution, Second Edition, 

Springer-Verlag, 

2012. 

2. Iben, I. Stellar Evolution Physics, Vol. 1 

and 2. Cambridge University Press, 2013. 

3. Prialnik, D. An Introduction to the Theory 

of Stellar Structure and Stellar Evolution, 

CUP, 2000. 

4. Padmanabhan, T. Theoretical 

Astrophysics, Volume II: Stars and Stellar 

Systems, CUP, 2001. 

Additional support 

There will be four example sheets each of 

which will be discussed during an examples 

class. There will be 

a one-hour revision class in the Easter Term. 

Magnetohydrodynamics (M16) 

Prof. M.R.E. Proctor 

Magnetohydrodynamics is the study of the 

interaction between magnetic _elds and 

conducting uids. Two 

main e_ects are of interest. Firstly moving 

conducting uid can generate electric currents 

from magnetic 

_elds through Faraday induction, and this 

leads to changes in the magnetic _eld. For 

su_ciently vigorous 

ows magnetic _elds can be self-excited ('uid 

dynamos'), and this process is responsible for 

the generation 

of magnetic _elds in the Earth, Sun and other 

astrophysical bodies. Quite recently uid 

dynamos have 



 

 

been demonstrated in the laboratory. While 

induction is a linear process, nonlinearity is 

induced since 

magnetic _elds exert forces on the uid, and 

these are proportional to the square of the 

_eld strength. 

This interaction leads to new types of wave 

motion ('Alfven waves') in conducting 

magnetised uids, and 

has large scale e_ects of for example the 

statistics of fully developed turbulence and 

the morphology of 

sunspots. The course will treat both the basic 

theory and a number of applications as time 

permits. The 

theory will be developed in a classical rather 

than relativistic framework. 

Pre-requisites 

Knowledge of uid dynamics and basic 

electrodynamics would be an advantage. 

 

Literature 
1. Mo_att, H.K. Generation of magnetic 

_elds in conducting uids. C.U.P. (out of print) 

2. Priest, E.R. Solar magnetohyrodynamics. 

Kluwer. 

3. Dormy and Soward, eds. Mathematical 

Aspects of Natural Dynamos. CRC Press 

4. S.Chandrasekhar. Hydrodynamics and 

Hydromagnetic Stability. Dover. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 
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The Origin and Evolution of Galaxies (M16) 

Martin Haehnelt 

Galaxies are a fundamental building block of 

our Universe. The course will give an 

account of the physics 

of the formation of galaxies and their central 

supermassive black holes in the context of 

the standard 

paradigm for the formation of structure in the 

Universe. 

Speci_c topics to be covered include the 

following: 

_ Observed properties of galaxies 

_ Cosmological framework and basic 

physical processes 

_ The interplay of galaxies and the 

intergalactic medium from which they form 

_ Numerical Methods for modeling galaxy 

formation 

_ Collapse of dark matter haloes and the 

inow/outow of baryons 

_ The hierarchical build-up of galaxies 

_ The origin and evolution of the central 

supermassive black holes in galaxies 

_ Towards understanding the origin of the 

Hubble sequence of galaxies 

Pre-requisites 

The course is aimed at 

astronomers/astrophysicists (including 

beginning graduate students). It should 

be also suitable for interested physicists and 

applied mathematicians. The course is self-

contained, but 

students who have previously attended 

introductory courses in General Relativity 

and/or Cosmology will 

have an easier start. 

 

Literature 
1. Mo, H., van den Bosch, F., White, S., 

Galaxy Formation and Evolution, 2010, 

Cambridge University 

Press. 

2. Sparke, L., Gallagher, J.S., Galaxies in the 

Universe, 2nd ed., 2007, Cambridge 

University Press. 

3. Schneider, P., Extragalactic Astronomy 

and Cosmology: An Introduction, 2006, 

Springer. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 



 

 

a revision class in the Easter Term. 

Galactic Astronomy and Dynamics (L24) 

Wyn Evans 

Astrophysics provides many examples of 

complex dynamical systems. This course 

covers the mathematical 

tools to describe Galaxies as well as 

reviewing their observational properties. The 

behaviour of these 

systems is controlled by Newton's laws of 

motion and Newton's law of gravity. Galaxies 

are dynamically 

very young, a typical star like the Sun having 

orbited only thirty or so times around the 

galaxy. The 

motions of stars in Galaxies are described 

using classical statistical mechanics, since the 

number of stars 

is so great. The study of large assemblies of 

stars interacting via long-range forces 

provides many unusual 

examples of cooperative phenomena, such as 

bars and spiral structure. The interplay 

between astrophysical 

dynamics and modern cosmology is also 

important { much of the evidence for dark 

matter is dynamical 

in origin. 
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1. Observational overview. Stellar 

populations in galaxies, galaxy morphology 

and classi_cation. Dust 

and gas in galaxies. Scaling Laws. 

2. Theory of the gravitational potential. 

Poisson's equation. Spherical, spheroidal and 

disk-like systems. 

3. Regular and chaotic orbits, the epicyclic 

approximation, surfaces of section, integrals 

of motion, 

action-angle coordinates, adiabatic 

invariance. 

4. Collisionless stellar dynamics, the 

Boltzmann equation, the Jeans Theorem, the 

Jeans equations, 

equilibrium models, astrophysical 

applications. 

5. Collisional dynamics, the Fokker-Planck 

equation, dynamical friction. 

6. Globular cluster evolution, evaporation 

and ejection, the gravothermal catastrophe, 

the e_ect of 

hard and soft binaries. 

7. Galactic stability, the Jeans length, theories 

of spiral structure, the role of resonances. 

8. The Milky Way Galaxy, the Local Group. 

Disk, bar, bulge and halo of the Milky Way 

Pre-requisites 

This course is suitable for applied 

mathematicians and astrophysicists. 

Although the course is selfcontained, 

familiarity with Lagrangian & Hamiltonian 

mechanics and mathematical methods would 

be 

useful. 

Preliminary Reading 

1. Harwit M., 1982 Cosmic Discovery: The 

Search, Scope and Heritage of Astronomy, 

Basic Books 

2. Elmegreen D.M., 1997 Galaxies and 

Galactic Structure, Prentice Hall 

3. Sparke L., Gallagher J., 2007 Galaxies in 

the Universe, Cambridge University Press 

 

Literature 
1. Bertin G., 2000, The Dynamics of 

Galaxies, Cambridge University Press 

2. Binney J., Tremaine S., 2007, Galactic 

Dynamics, Princeton University Press 

3. Heggie D., Hut P. 2003, The Million Body 

Problem, Cambridge University Press 

4. Murray C, Dermott S., 1999, Solar System 

Dynamics, Cambridge University Press 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will 

also be a two-hour revision class in the Easter 

Term. 

Dynamics of Astrophysical Discs (L16) 



 

 

Henrik Latter 

Discs of matter in orbital motion around a 

massive central body occur in numerous 

situations in astrophysics. 

For example, Saturn's rings consist of 

trillions of metre-sized iceballs that undergo 

gentle 

collisions as they orbit the planet and behave 

collectively like a (non-Newtonian) uid. 

Protostellar or 

protoplanetary discs are the dusty gaseous 

nebulae that surround young stars for their 

_rst few million 

years; they accommodate the angular 

momentum of the collapsing cloud from 

which the star forms, and 
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are the sites of planet formation. Plasma 

accretion discs are found around black holes 

in interacting binary 

star systems and in the centres of active 

galaxies; they reveal the properties of the 

compact central objects 

and produce some of the most luminous 

sources in the Universe. These diverse 

systems have much in 

common dynamically. 

The theoretical study of astrophysical discs 

combines aspects of orbital dynamics and 

continuum mechanics 

(uid dynamics or magnetohydrodynamics). 

The evolution of an accretion disc is 

governed by the 

conservation of mass and angular momentum 

and is regulated by the e_ciency of angular 

momentum 

transport. An astrophysical disc is a rotating 

shear ow whose local behaviour can be 

analysed in a 

convenient model known as the shearing 

sheet. Various instabilities can occur and give 

rise to sustained 

angular momentum transport. The resonant 

gravitational interaction of a planet or other 

satellite with 

the disc within which it orbits generates 

waves that carry angular momentum and 

energy. This process 

leads to orbital evolution of the satellite and 

is one of the factors shaping the observed 

distribution of 

extrasolar planets. 

Provisional synopsis: 

_ Occurrence of discs in various astronomical 

systems, basic physical and observational 

properties. 

_ Orbital dynamics, characteristic 

frequencies, precession, elementary 

mechanics of accretion. 

_ Viscous evolution of an accretion disc. 

_ Vertical disc structure, thin-disc 

approximations, thermal instability in 

cataclysmic variables. 

_ The shearing sheet, symmetries, shearing 

waves. 

_ Incompressible dynamics: hydrodynamic 

stability, vortices and dust dynamics in 

protoplanetary 

disks. 

_ Compressible dynamics: density waves, 

gravitational instability and 

`gravitoturbulence' in planetary 

rings and protoplanetary discs. 

_ Satellite-disc interaction, impulse 

approximation, gap opening by embedded 

planets. 

_ Magnetorotational instability, `dead zones' 

in protoplanetary discs. 

Pre-requisites 

Newtonian mechanics and basic uid 

dynamics. Some knowledge of 

magnetohydrodynamics is helpful for 

the magnetorotational instability. 

 

Literature 
1. Frank, J., King, A. & Raine, D. (2002), 

Accretion Power in Astrophysics, 3rd edn, 

CUP. 

2. Pringle, J. E. (1981), Annu. Rev. Astron. 

Astrophys. 19, 137. 



 

 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. 

Binary Stars (L16) 

Christopher Tout 

A binary star is a gravitationally bound 

system of two component stars. Such systems 

are common in 

our Galaxy and a substantial fraction interact 

in ways that can signi_cantly alter the 

evolution of the 

individual stellar components. Many of the 

interaction processes lend themselves to 

useful mathematical 

modelling when coupled with an 

understanding of the evolution of single stars. 
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In this course we begin by exploring the 

observable properties of binary stars and 

recall the basic dynamical 

properties of orbits by way of introduction. 

This is followed by an analysis of tides, 

which represent the 

simplest way in which the two stars can 

interact. From there we consider the extreme 

case in which tides 

become strong enough that mass can ow from 

one star to the other. We investigate the 

stability of 

such mass transfer and its e_ects on the 

orbital elements and the evolution of the 

individual stars. As a 

prototypical example we examine Algol-like 

systems in some detail. Mass transfer leads to 

the concept 

of stellar rejuvenation and blue stragglers. As 

a second example we look at the Cataclysmic 

Variables in 

which the accreting component is a white 

dwarf. These introduce us to novae and dwarf 

novae as well 

as a need for angular momentum loss by 

gravitational radiation or magnetic braking. 

Their formation 

requires an understanding of signi_cant 

orbital shrinkage in what is known as 

common envelope evolution. 

Finally we apply what we have learnt to a 

number of exotic binary stars, such as 

progenitors of type Ia 

supernovae, X-ray binaries and millisecond 

pulsars. 

Pre-requisites 

The Michaelmas term course on Structure 

and Evolution of Stars is very useful but not 

absolutely essential. 

Knowledge of elementary Dynamics and 

Fluids will be assumed. 

 

Literature 
1. Pringle J. E. and Wade R. A., Interacting 

Binary Stars. CUP. 

Reading to complement course material 

1. Eggleton P. P., Evolutionary Processes in 

Binary and Multiple Stars. CUP. 

Additional support 

Three examples sheets will be provided and 

three associated two-hour classes will be 

given. There will be 

a two-hour revision class in the Easter Term. 
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Quantum Computation, Information and 

Foundations 

Quantum Information Theory (M24) 

William Matthews 

Quantum Information Theory (QIT) is an 

exciting, young _eld which lies at the 

intersection of Mathematics, 

Physics and Computer Science. It was born 

out of Classical Information Theory, which is 

the 

mathematical theory of acquisition, storage, 

transmission and processing of information. 

QIT is the study 

of how these tasks can be accomplished, 

using quantum-mechanical systems. The 

underlying quantum 



 

 

mechanics leads to some distinctively new 

features which have no classical analogues. 

These new features 

can be exploited, not only to improve the 

performance of certain information-

processing tasks, but also 

to accomplish tasks which are impossible or 

intractable in the classical realm. 

This is an introductory course on QIT, which 

should serve to pave the way for more 

advanced topics in 

this _eld. 

The course will start by introducing a 

mathematical framework, based on the 

postulates of quantum 

mechanics and widely used in the study of 

quantum information theory, in which we can 

describe the time 

evolution of open systems (quantum 

operations) and very general forms of 

measurement (instruments and 

POVMs). Along the way we will prove 

results establishing the non-locality of 

quantum mechanics (Bell's 

theorem), the fact that quantum information 

cannot be perfectly copied (the \no-cloning" 

theorem), and 

fundamental limits on how well di_erent 

states of a quantum system can be 

distinguished by measurements. 

Building on this we will develop some of the 

major results of classical and quantum 

information theory, 

which concern data compression and the 

reliable transmission of information over 

noisy communication 

channels. Key mathematical ideas introduced 

in the process will be the classical and 

quantum notions of 

entropy and information, channel capacities, 

as well as random coding arguments. We will 

also look at 

the remarkable \dense coding" and 

\teleportation" protocols, which make use of 

the strange phenomenon 

of entanglement to accomplish tasks that 

would otherwise be impossible, and look at 

various ways of 

classifying and quantifying entangled states. 

Pre-requisites 

Knowledge of basic quantum mechanics will 

be assumed. However, an additional lecture 

can be arranged 

for students who do not have the necessary 

background in quantum mechanics. 

Elementary knowledge of 

Probability Theory, Vector Spaces and 

Linear Algebra will be useful. 

 

Literature 
The following books and lecture notes 

provide some interesting and relevant 

introductory reading material. 

1. M. A. Nielsen and I. L. Chuang, Quantum 

Computation and Quantum Information; 

Cambridge 

University Press, 2000. 

2. M. M. Wilde, From Classical to Quantum 

Shannon Theory, CUP; 

http://arxiv.org/abs/1106.1445. 

3. J. Preskill, Chapter 5 of his lecture notes: 

Lecture notes on Quantum Information 

Theory http: 

//www.theory.caltech.edu/~preskill/ph229/#l

ecture 

Additional support 

Course Instructor: Felix Leditzky 

There will be four examples sheets 

(distributed in class) and four associated 

examples classes. The last 

examples class will be in Lent term. The 

course instructor will be Felix Leditzky. 
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Quantum Computation (M16) 

Richard Jozsa 

Quantum mechanical processes can be 

exploited to provide new modes of 

information processing that 



 

 

are beyond the capabilities of any classical 

computer. This leads to remarkable new 

kinds of algorithms 

(so-called quantum algorithms) that can o_er 

a dramatically increased e_ciency for the 

execution of some 

computational tasks. Notable examples 

include integer factorisation (and consequent 

e_cient breaking 

of commonly used public key crypto 

systems) and database searching. In addition 

to such potential 

practical bene_ts, the study of quantum 

computation has great theoretical interest, 

combining concepts 

from computational complexity theory and 

quantum physics to provide striking 

fundamental insights into 

the nature of both disciplines. 

The course will cover the following topics: 

Notion of qubits, quantum logic gates, circuit 

model of quantum computation. Basic 

notions of quantum 

computational complexity, oracles, query 

complexity. 

The quantum Fourier transform. Exposition 

of fundamental quantum algorithms 

including the Deutsch- 

Jozsa algorithm, Shors factoring algorithm, 

Grovers searching algorithm. 

A selection from the following further topics 

(or others): 

(i) Quantum teleportation and the 

measurement-based model of quantum 

computation; 

(ii) Lower bounds on quantum query 

complexity; 

(iii) Applications of phase estimation in 

quantum algorithms; 

(iv) Quantum simulation for local 

hamiltonians. 

Pre-requisites 

It is desirable to have familiarity with the 

basic formalism of quantum mechanics 

especially in the simple 

context of _nite dimensional state spaces 

(state vectors, composite systems, unitary 

matrices, Born rule 

for quantum measurements). Revision notes 

will be provided giving a summary of the 

necessary material 

including an exercise sheet covering 

notations and relevant calculational 

techniques of linear algebra. It 

would be desirable for you to look through 

this material at (or slightly before) the start of 

the course. Any 

encounter with basic ideas of classical 

theoretical computer science (complexity 

theory) would be helpful 

but is not essential. 

 

Literature 
1. Nielsen, M. and Chuang, I., Quantum 

Computation and Quantum Information. 

CUP, 2000. 

2. Kaye, P., Laamme, R. and Mosca, M. An 

Introduction to Quantum Computing. OUP, 

2007. 

3. John Preskill Lecture Notes on Quantum 

Information Theory, available at 

http://www.theory.caltech.edu/people/preskill

/ph219/ 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 
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Philosophy of Physics 

The courses in Philosophy of Physics are 

open to all students doing Part III, but are 

formally listed as 

graduate courses. This means there is no 

exam at the end of May for any such course; 

but a Part III 

student can get credit for them by doing their 

submitted Part III essay in association with 

one of the 



 

 

courses. More generally, the Philosophy of 

Physics courses are intended as a refreshing 

and reective 

companion to the other Part III courses, 

especially the courses in theoretical physics. 

Philosophical Aspects of Quantum Field 

Theory (M8) 

Non-Examinable (Part III Level) 

J. Butter_eld and A. Caulton 

Quantum _eld theory has for many decades 

been the framework for several basic and 

outstandingly successful 

physical theories. Nowadays, it is being 

addressed by philosophy of physics (which 

has traditionally 

concentrated on conceptual questions raised 

by non-relativistic quantum mechanics and 

relativity). This 

course will introduce this  

Literature. More speci_cally, we will 

address the following topics: particle vs. 

_eld, including second vs. _eld quantization; 

localisation; and the algebraic approach to 

quantum _eld 

theory. 

Pre-requisites 

There are no formal prerequisites. Previous 

familiarity with the quantum _eld theory, 

such as provided 

by the Part III courses, will be helpful. 

Preliminary Reading 

This list of introductory reading is 

approximately in order of increasing 

di_culty. 

1. S. Weinberg (1997), `What is Quantum 

Field Theory, and What Did We Think It Is?'. 

Available 

online at: http://arxiv.org/abs/hep-

th/9702027; and in Cao ed. 

2. D.Wallace (2006), `In defense of naivet_e: 

The conceptual status of Lagrangian quantum 

_eld theory', 

Synthese, 151 (1):33-80, 2006. Available 

online at: http://arxiv.org/pdf/quant-

ph/0112148v1 

3. R. Clifton and H. Halvorson (2001), `Are 

Rindler quanta real? Inequivalent particle 

concepts in 

quantum _eld theory', British Journal for 

Philosophy of Science, 52, pp 417-470. 

Sections 1, 2.1, 

2.2, 3.1, 3.2. Available online at: 

http://arxiv.org/abs/quant-ph/0008030 

 

Literature 
This list of readings to complement course 

material is approximately in order of 

increasing di_culty. 

1. D. Wallace (2001), `Emergence of 

particles from bosonic quantum _eld theory'. 

Available online at: 

http://arxiv.org/abs/quant-ph/0112149 

2. T. Cao, (ed.) The Conceptual Foundations 

of Quantum Field Theory. Cambridge 

University Press, 

1999. 

3. L. Ruetsche, Interpreting Quantum 

Theories. Oxford University Press, 2011. 

4. W. Greiner. Relativistic Quantum 

Mechanics. 2nd edition. Springer 1997. 

5. W. Greiner and J. Reinhardt. Field 

Quantization. Springer 1996. 
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6. R. Haag. Local Quantum Physics: _elds, 

particles, algebras. Springer 1992. 

7. A. Duncan, The Conceptual Framework of 

Quantum Field Theory. Oxford University 

Press, 2012. 

8. Boyd, J.P., The Devil's invention: 

asymptotic, superasymptotic and 

hyperasymptotic series, Acta 

Applicandae, 56, 1-98 (1999). Also available 

at 

http://hdl.handle.net/2027.42/41670 

Additional support 

A Part III essay will be o_ered in conjunction 

with this course. 

Space-time in Light of Particle Physics (L8) 

Non-Examinable (Part III Level) 

J. Brian Pitts 



 

 

Pre-requisites 

Imagine a world in which gravitation theory 

and particle physics have always mixed 

freely. These lectures 

will sketch such a world by taking a particle 

physics-avoured look at gravitational theory, 

including 

General Relativity and some (perhaps) 

serious competition. Wigner's taxonomy in 

terms of mass and 

spin provides a starting place. How do we 

knonw that gravity is a tensor and not a scalar 

or vector? How 

(if at all) do we know that gravity is 

massless? What can we say about gravity and 

space-time if gravity 

is not presumed to be exceptional? Could one 

plausibly arrive at Einstein's equations? Do 

Einstein's 

principles, if not assumed, reappear as 

theorems? What does one make of 

conservation laws and Noether's 

theorems? How do spinors _t in, especially 

given nonlinear group realizations? We will 

also glance at 

Einstein's process of discovery, which 

historians have noticed involved a physical 

strategy involving an 

analogy to electromagnetism and attention to 

conservation laws, in addition to the now-

famous principles. 

Such ideas were later applied independently 

by particle physics in derivations of 

Einstein's equations as 

describing a self-interacting massless spin-2 

_eld. The mathematics used will be 

relativistic classical _eld 

theory. An Essay will be associated with this 

course. 

 

Literature 
1. Preskill-Thorne foreword to the Feynman 

Lectures on Gravitation, 1995. 

2. D. Giulini, `What Is (Not) Wrong with 

Scalar Gravity?', Studies in History and 

Philosophy of 

Modern Physics, 39:154-180, 2008, gr-

qc/0611100v2. 

3. P. G. O. Freund and Y. Nambu, `Scalar 

_elds coupled to the trace of the energy-

momentum tensor', 

Physical Review, 174:1741{1743, 1968. 

4. S. N. Gupta, `Gravitation and 

Electromagnetism', Physical Review, 

96:1683{1685, 1954. 

5. V. I. Ogievetsky and I. V. Polubarinov, 

`Interacting Field of Spin 2 and the Einstein 

Equations', 

Annals of Physics, 35:167{208, 1965. 

6. S. Deser, `Supergravity: A Unique Self-

Interacting Theory', in P. L. Garc__a, A. 

P_erez-Rend_on, and 

J. M. Souriau, eds., Di_erential Geometrical 

Methods in Mathematical Physics, volume 

836 of Lecture 

Notes in Mathematics, pages 432{439, 1980. 

7. Arkady I. Vainshtein, `To the Problem of 

Nonvanishing Gravitation Mass', Physics 

Letters B, 39:393{ 

394, 1972. 

8. David G. Boulware and Stanley Deser, 

`Can Gravitation Have a Finite Range?', 

Physical Review D, 

6:3368{3382, 1972. 

81 

9. S. F. Hassan and R. A. Rosen, `On Non-

linear Actions for Massive Gravity', Journal 

of High Energy 

Physics, 1107(009), 2011, 

arXiv:1103.6055v3 [hep-th]. 

10. J. Renn and T. Sauer, `Heuristics and 

Mathematical Representation in Einstein's 

Search for a 

Gravitational Field Equation', in H. Goenner, 

J. Renn, J. Ritter and T. Sauer, The 

Expanding 



 

 

Worlds of General Relativity, pp. 87-125, 

Einstein Studies, volume 7, Birkh • auser, 

Boston, 1999. 
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Applied and Computational Analysis 

Applied and computational analysis (ACA) is 

concerned with mathematical tools of broad 

applicability, 

e.g. ordinary and partial di_erential 

equations, nonlinear dynamical systems, 

integrable systems, numerical 

analysis, approximation theory, inverse 

problems and image analysis. While the 

approach is mathematical, 

the ultimate destination of these tools is to 

applications. This tension between the pure 

and the applied 

is at the core of di_erent ACA themes. 

Set-valued Analysis and Optimisation (M16) 

Tuomo Valkonen 

Modern approaches to image processing, 

machine learning, and various big data 

applications, almost 

invariably involve the solution of non-smooth 

optimisation problems. Already at the start, 

in the characterisation 

of optimal solutions to these problems, and 

the development of numerical methods, we 

run into 

the most fundamental concept of set-valued 

analysis: the convex subdi_erential. For the 

understanding 

of the stability and sensitivity of solutions 

under perturbations of data and model 

parameters, we need to 

delve further into the di_erentiation of 

general set-valued functionsa fascinating 

concept faced with many 

challenges. In this course, we will take a look 

at the central analytical results of this area, 

along with 

developing some practical numerical 

methods with an eye to image processing and 

data science. 

The course will cover at least: 

1. Minima of non-smooth 

functions|subdi_erentials|convex analysis 

2. Methods for convex 

minimisation|Moreau{Yosida regularisation 

3. Sensitivity analysis|Lipschitz properties of 

set-valued mappings 

4. Graphical derivatives and coderivatives|the 

Mordukhovich criterion 

Pre-requisites 

Knowledge of undergraduate calculus and 

linear algebra is required, as well as 

elementary (A-level) geometry. 

A basic course in optimisation theory is 

recommended, however not necessary. 

 

Literature 
1. J.-B. Hiriart-Urruty, C. Lemarchal, Convex 

Analysis and Minimization Algorithms I{II, 

Springer- 

Verlag, 1993. 

2. R. T. Rockafellar, R. J.-B. Wets, 

Variational Analysis, Springer, 1998. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. 

Inverse Problems (M16) 

Martin Benning 

Solving an inverse problem is the task of 

computing an unknown physical quantity that 

is related to given, 

indirect measurements via a forward model. 

Inverse problems appear in a vast majority of 

applications, 

including imaging (Computed Tomography 

(CT), Positron Emission Tomography (PET), 

Magnetic Resonance 

Imaging (MRI), Electron Tomography (ET), 

microscopic imaging, geophysical imaging), 

signal- 
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and image-processing, computer vision, 

machine learning and (big) data analysis in 

general, and many 

more. 



 

 

Inverting a forward model however is not 

straightforward in most relevant applications, 

for two basic 

reasons: either a (unique) inverse model 

simply does not exist, or existing inverse 

models heavily amplify 

small measurement errors. In this course we 

are going to address the mathematical aspects 

of inverse 

problems, and discuss the concept of 

regularisation for _nding stable 

approximations of the inverse of a 

speci_c forward model. 

Pre-requisites 

This course assumes basic knowledge in 

analysis and linear algebra, as well as their 

numerical counterparts. 

In addition to that, basic programming skills 

in MATLAB are required. 

Additional knowledge in partial di_erential 

equations, functional analysis, variational 

calculus, image 

processing or (convex) optimisation is 

bene_cial, but not mandatory. 

 

Literature 
1. Engl, Heinz Werner, Martin Hanke, and 

Andreas Neubauer. Regularization of inverse 

problems. 

Vol. 375. Springer Science & Business 

Media, 1996. 

2. Natterer, Frank and Frank W • ubbeling. 

Mathematical Methods in Image 

Reconstruction. Vol. 73, 

SIAM, 2001. 

3. Martin Burger, Inverse Problems. Lecture 

notes winter 2007/2008. 

http://wwwmath.uni-

muenster.de/num/Vorlesungen/IP_WS07/skri

pt.pdf 

Additional support 

The amount of example sheets and associated 

example classes will be announced at the 

beginning of the 

lecture. 

Distribution Theory and Applications (M16) 

A.C.L. Ashton 

This course will give an introduction to the 

theory of distributions and its application to 

the study of 

linear PDEs. We aim to make mathematical 

sense of objects like the Dirac delta function 

and _nd out 

how to meaningfully take the Fourier 

transform of a polynomial. The course will 

focus on the use of 

distributions, rather than the functional-

analytic foundations of the theory. 

First we will cover the basic de_nitions for 

distributions and related spaces of test 

functions. Then we 

will look at operations such as di_erentiation, 

translation, convolution and the Fourier 

transform. We will 

look at the Sobolev spaces Hs(Rn) and Hs 

loc(X) and their description in terms of the 

Fourier transform 

of tempered distributions. Time permitting, 

the material that follows will address 

questions such as 

_ What does a generic distribution look like? 

_ Why are solutions to Laplace's equation 

always in_nitely di_erentiable? 

_ Which functions are the Fourier transform 

of a distribution? 

i.e. structure theorems, elliptic regularity, 

Paley-Wiener-Schwartz. In the _nal part of 

the course we will 

study H• ormander's oscillatory integrals. 

84 

Pre-requisites 

Elementary concepts from undergraduate real 

analysis. Some knowledge of complex 

analysis would be 

advantageous (e.g. the level of IB Complex 

Analysis/Methods). No knowledge of 

functional analysis is 

assumed. 

Preliminary Reading 



 

 

1. Friedlander & Joshi, Introduction to the 

Theory of Distributions. Cambridge 

University Press, 1998. 

2. Lighthill, Introduction to Fourier Analysis 

and Generalised Functions. Cambridge 

University Press, 

1958. 

3. Folland, Introduction to Partial Di_erential 

Equations. Princeton University Press, 1995. 

 

Literature 
1. H• ormander, The Analysis of Partial 

Di_erential Operators: Vol I. Springer 

Verlag, 1985. 

2. Reed & Simon, Methods of Modern 

Mathematical Physics: Vol I-II. Academic 

Press, 1979. 

3. Tr_eves, Linear Partial Di_erential 

Equations with Constant Coe_cients. 

Routledge, 1966. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. Model solutions 

will be made available. 

Boundary Value Problems for Linear PDEs 

(L16) 

Athanassios S. Fokas 

Recent developments in the area of the so-

called integrable nonlinear Partial Di_erential 

Equations (PDEs) 

have led to the emergence of a new method 

for solving boundary value problems, which 

is usually referred 

to as the Uni_ed Transform (UT). 

The UT will be implemented to: 

(a) Linear evolution PDEs in one spatial 

variable formulated either on the half-line or 

on a _nite interval. 

Examples include the heat equation and the 

Stokes equation (linearised version of the 

KdV). 

(b) Linear elliptic PDEs in two spatial 

variables formulated in the interior of a 

convex polygon. Examples 

include the Laplace, the modi_ed Helmholtz, 

and the Helmholtz equations. 

For the above problems, in addition to 

presenting integral representations of the 

solution, simple numerical 

techniques for the e_ective computation of 

the solution will also be introduced. 

Pre-requisites 

The course only requires some elementary 

knowledge of complex analysis. 

 

Literature 
1. A.S. Fokas, A uni_ed method for boundary 

value problems. 1st edition. SIAM, 2008. 
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Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. 

Compressed Sensing and Sampling Theory 

(L16) 

Non-Examinable (Graduate Level) 

Anders Hansen 

This is a graduate course on sampling theory 

and compressed sensing for use in signal 

processing and 

medical imaging. Compressed sensing is a 

theory of randomisation, sparsity and non-

linear optimisation 

techniques that breaks traditional barriers in 

sampling theory. Since its introduction in 

2004 the _eld has 

exploded and is rapidly growing and 

changing. Thus, we will take the word 

contemporary quite literally 

and emphasise the latest developments, 

however, no previous knowledge of the _eld 

is assumed. Although 

the main focus will be on compressed 

sensing, it will be presented in the general 

framework of sampling 

theory. The course will also present related 

areas of sampling theory such as generalised 

sampling. 



 

 

The course will be fairly self contained, and 

applications will be emphasised (in 

particular, signal processing, 

Magnetic Resonance Imaging (MRI) and X-

ray Tomography). The lectures will cover the 

most up 

to date research, and although this is a Part 

III course, it is also aimed at Phd students 

and post docs 

who are interested in using compressed 

sensing and generalised sampling in their 

research. Students from 

other disciplines than mathematics are 

encouraged to participate. 

Pre-requisites 

Sampling theory and compressed sensing 

require a mix of mathematical tools from 

approximation theory, 

harmonic analysis, linear algebra, functional 

analysis, optimisation and probability theory. 

The course 

will contain discussions of both _nite-

dimensional and in_nite-dimensional/analog 

signal models and thus 

linear algebra, Fourier analysis and 

functional analysis (at least basic Hilbert 

space theory) are important. 

The course will be self-contained, but 

students are encouraged to refresh their 

memories on properties of 

the Fourier transform as well as basic Hilbert 

space theory. Some basic knowledge of 

wavelets is useful as 

well as basic probability. 

Preliminary Reading 

For a quick and dense review of basic Fourier 

analysis and functional analysis chapters 5 

and 8 of "Real 

Analysis" (Folland) are good choices. For an 

introductory exposition to Hilbert space 

theory one may use 

"An Introduction to Hilbert Space" (Young). 

And for a review of wavelets see chapters 1 

and 2 of "A 

First Course on Wavelets" (Hernandez, 

Weiss). The course will cover some of the 

chapters of "Compressed 

Sensing" (Eldar, Kutyniok), so to get a 

feeling about the topic one may consult 

chapter 1 as a start. 

1. Eldar, Y and Kutyniok, G., Compressed 

Sensing, CUP 

2. Folland, G. B., Real Analysis, Wiley. 

3. Hernandez, E. and Weiss, G., A First 

Course on Wavelets, CRC 

4. Young, N., An Introduction to Hilbert 

Space, CUP 

 

Literature 
The following reading list complements the 

course material. 

1. Adcock, B and Hansen, A., Stable 

reconstructions in Hilbert spaces and the 

resolution of the Gibbs 

phenomenon, Appl. Comp. Harm. Anal., 32 

(2012) 

86 

2. Cand_es, E. and Romberg, J. and Tao, T., 

Robust uncertainty principles: exact signal 

reconstruction 

from highly incomplete frequency 

information, IEEE Trans. Inform. Theory 52 

(2006) 

3. Donoho, D., Compressed sensing, IEEE 

Trans. Inform. Theory 52 (2006) 

4. K• orner, T. W., Fourier Analysis, CUP 

5. Reed, M. and Simon, B., Functional 

Analysis, Elsevier 

Additional support 

As this is a non-examinable course there will 

be no examples classes, however, there will 

be several 

computer tutorials where practical 

implementations and real world examples 

will be discussed. There will 

also occasionally be lectures given by people 

from other groups outside of mathematics 

using compressed 

sensing in practice. 



 

 

Homogenization of PDEs (E16) 

Non-Examinable (Graduate Level) 

Harsha Hutridurga 

This course aims to introduce the theory of 

Homogenization. Partial Di_erential 

Equations with highly 

oscillating coe_cients arise in the study of 

many physical phenomena (composite 

materials, porous media 

ows, rare_ed gas dynamics, turbulence etc.). 

Homogenization, loosely speaking, replaces 

the PDE 

with highly oscillating coe_cients by an 

equivalent PDE which \on average" behaves 

like the original 

heterogeneous PDE. All along this course, 

emphasis shall be given on the study of PDEs 

with periodically 

oscillating coe_cients. We shall be studying 

the homogenization of the following PDEs: 

1. Di_usion Equation: to study the 

conductivity of mixtures. 

2. Stokes' Equation: to derive the celebrated 

`Darcy's Law' in porous media. 

3. Convection-Di_usion Equation: to derive 

the expression for `Taylor Dispersion'. 

4. Linear Boltzmann Equation: to study the 

interaction of the monokinetic particles with 

the background 

medium. 

5. Euler Equations (incompressible): to 

derive the k-" model for turbulence. 

A formal method of `Asymptotic Expansions' 

will be introduced in the beginning of the 

course followed 

by the more rigorous methods like the 

`Energy Method' and the notion of `Two 

scale Convergence'. 

This course shall also address the handicap of 

the standard Finite Element Method (FEM) 

to arrive 

at a numerical solution to PDEs with highly 

oscillating coe_cients. As an application of 

the theory of 

Homogenization, this handicap of FEM shall 

be overcome by the introduction of 

Multiscale Finite Element 

Method (MFEM). 

Pre-requisites 

1. Some basic notions of PDEs (C. Mouhot's 

`Analysis of PDE' might be useful). 

2. Some compactness results from Functional 

Analysis (shall be recalled during the course). 

3. Some basic notions of FEM (A. Iserles's 

`Numerical Solution of DEs' might be 

useful). 
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Literature 
1. A. Bensoussan, J.L. Lions, G.C. 

Papanicolaou, Asymptotic analysis for 

periodic structures, North- 

Holland, Amsterdam, 1978. 

2. D. Cioranescu, P. Donato, An introduction 

to homogenization, Oxford lecture series in 

mathematics 

and its applications 17, Oxford University 

Press, New York, 1999. 

3. G. Allaire, Homogenization and two-scale 

convergence, SIAM J. Math. Anal., Vol 23, 

No.6, pp.1482- 

1518, (1992). 

4. T.Y. Hou, X-H. Wu, Z. Cai, Convergence 

of a multiscale _nite element method for 

elliptic problems 

with rapidly oscillating coe_cients, Math. 

Comp., Vol 68, No.227, pp.913-943, (1999). 
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Continuum Mechanics 

The four courses in the Michaelmas Term are 

intended to provide a broad educational 

background for any 

student preparing to start a PhD in uid 

dynamics. The courses in the Lent Term are 

more specialized 

and in some cases (see the course 

descriptions) build on the Michaelmas Term 

material. 

Desirable previous knowledge 



 

 

For all the uid dynamics courses, previous 

attendance at an introductory course in uid 

dynamics will be 

assumed. In practice, familiarity with the 

continuum assumption, the material 

derivative, the stress tensor 

and the Navier-Stokes equation will be 

assumed, as will basic ideas concerning 

incompressible, inviscid 

uid mechanics (e.g. Bernoulli's Theorem, 

vorticity, potential ow). Some knowledge of 

basic viscous 

ow, such as Stokes ow, lubrication theory and 

elementary boundary-layer theory, is highly 

desirable. 

Previous attendance at a course on wave 

theory covering concepts such as wave 

energy and group velocity, 

is desirable for some courses. No previous 

knowledge of solid mechanics, Earth 

Sciences, or biology is 

required. 

In summary, knowledge of Chapters 1-8 of 

`Elementary Fluid Dynamics' (D.J. Acheson, 

Oxford), plus 

Chapter 3 of `Waves in Fluids' (J. Lighthill, 

Cambridge)(which deals with dispersive 

waves) would give a 

student an excellent grounding. 

Familiarity with basic vector calculus 

(including Cartesian tensors), di_erential 

equations, complex variable 

techniques (e.g. Fourier Transforms) and 

techniques for solution of elementary PDEs, 

such as 

Laplace's equation, Poisson's equation, the 

di_usion equation and the simple wave 

equation, will be 

assumed. Knowledge of elementary 

asymptotic techniques would be helpful. 

A Cambridge student taking continuum 

courses in Part III would be expected to have 

attended the 

following undergraduate courses 

Year Courses 

First Di_erential Equations, Dynamics and 

Relativity, Vector Calculus, Vectors & 

Matrices. 

Second Methods, Complex Methods, Fluid 

Dynamics. 

Third Fluid Dynamics, Waves, Asymptotic 

Methods. 

Students starting Part III from outside 

Cambridge might like to peruse the 

syllabuses for the above courses 

on WWW with URL: 

http://www.maths.cam.ac.uk/undergrad/sche

dules/ 

Slow Viscous Flow (M24) 

J.R. Lister 

In many ows of natural interest or 

technological importance, the inertia of the 

uid is negligible. This 

may be due to the small scale of the motion, 

as in the swimming of micro-organisms and 

the settling of 

_ne sediments, or due to the high viscosity of 

the uid, as in the processing of glass and the 

convection of 

the Earth's mantle. 

The course will begin by presenting the 

fundamental principles governing ows of 

negligible inertia. A 

number of elegant results and representations 

of general solutions will be derived for such 

ows. The 

motion of rigid particles in a viscous uid will 

then be discussed. Many important 

phenomena arise from 

the deformation of free boundaries between 

immiscible liquids under applied or surface-

tension forcing. 

The ows generated by variations in surface 

tension due to a temperature gradient or 

contamination by 

surfactants will be analysed in the context of 

the translation and deformation of drops and 

bubbles and in 



 

 

the context of thin _lms. The small cross-

stream lengthscale of thin _lms renders their 

inertia negligible 

and allows them to be analysed by lubrication 

or extensional-ow approximations. Problems 

such as the 
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fall of a thread of honey from a spoon and the 

subsequent spread of the pool of honey will 

be analysed 

in this way. Inertia is also negligible in ows 

through porous media such as the extraction 

of oil from 

sandstone reservoirs, movement of 

groundwater through soil or the migration of 

melt through a partially 

molten mush. Some basic ows in porous 

media may be discussed. 

The course aims to examine a broad range of 

slow viscous ows and the mathematical 

methods used 

to analyse them. The course is thus generally 

suitable for students of uid mechanics, and 

provides 

background for applied research in 

geological, biological or rheological uid 

mechanics. 

Pre-requisites 

As described above in the introduction to 

courses in Continuum Mechanics. Familiarity 

with basic vector 

calculus including Cartesian tensors and the 

summation convention is particularly useful 

for the _rst half 

of the course. 

Preliminary Reading 

1. D.J. Acheson. Elementary Fluid 

Dynamics. OUP (1990). Chapter 7 

2. G.K. Batchelor. An Introduction to Fluid 

Dynamics. CUP (1970). pp.216{255. 

3. L.G. Leal. Laminar ow and convective 

transport processes. Butterworth (1992). 

Chapters 4 & 5. 

 

Literature 

1. J. Happel & H. Brenner. Low Reynolds 

Number Hydrodynamics. Kluwer (1965). 

2. S. Kim & J. Karrila. Microhydrodynamics: 

Principles and Selected Applications. (1993) 

3. C. Pozrikidis. Boundary Integral and 

Singularity Methods for Linearized Viscous 

Flow. CUP (1992). 

4. O.M. Phillips. Flow and Reactions in 

Permeable Rocks. CUP (1991). 

Additional support 

Four two-hour examples classes will be given 

by the lecturer to cover the four examples 

sheets. There will 

be a further revision class in the Easter Term. 

Fluid Dynamics of the Environment (M24) 

S.B. Dalziel, A.W. Woods and N.M. Vriend 

Understanding and predicting the impact of 

human activity on the environment is a 

critical challenge in 

our time. The uid dynamics of oceans and 

atmospheres plays a vital role in regulating 

many aspects 

of our Earth and our direct environment. This 

course introduces the basic uid dynamics 

necessary to 

build mathematical models of the 

environment in which we live, and focuses 

on problems which occur 

over su_ciently small time and length scales 

to be largely una_ected by the earth's 

rotation. 

The course begins by considering the 

governing equations of uid ow in the 

presence of (typically small) 

density variations. Internal gravity waves can 

occur in the case of density variations in a 

uid, since these 

variations provide a restoring force. The 

course highlights some of the rich and 

surprising dynamics of 

these waves. In particular, internal gravity 

waves radiate energy vertically as well as 

horizontally, and 



 

 

their interaction with boundaries can focus 

this energy and cause mixing far from where 

the energy was 

input. 

Density variations within uids can also drive 

the ow and the course will consider two 

important and 

related classes where the ow is either tall and 

thin or long and shallow. Both classes allow 

substantial 

simpli_cation of the governing equations by 

integrating them over the smaller dimension. 

First, a relatively 
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localised source can drive the rise of a 

turbulent `plume' of buoyant uid. Volcanic 

eruption clouds, 

accidental releases of pollution and the 

natural ventilation of buildings are just three 

examples of such 

ows. Second, when there are lateral gradients 

in uid density interacting with horizontal or 

sloping 

boundaries, turbulent `density or gravity 

currents can develop. Similarly, for a 

strati_ed ambient uid, an 

`intrusion can develop 

The buoyancy driving these ows may be due 

to di_erences in temperature or composition 

(e.g. salt or 

water vapour concentration), or due to the 

presence of a second phase such as particles 

or bubbles. Examples 

of particle-laden ows include snow 

avalanches, turbidity currents and pyroclastic 

ows. Particle-uid 

and particle-particle interactions introduce a 

new range of interesting features. Particle 

suspension and 

deposition are important in a broad range of 

phenomena such as dune building and sand 

transport. 

Pre-requisites 

Undergraduate uid dynamics is desirable. 

 

Literature 
1. B. R. Sutherland, Internal gravity waves, 

Cambridge University Press, 2010. 

2. J. S. Turner, Buoyancy E_ects in Fluids, 

Cambridge University Press, 1979. 

3. J. Pedlosky, Geophysical Fluid Dynamics, 

Springer, 1987. 

Additional support 

In addition to the lectures, four examples 

sheets will be provided and four associated 

examples classes 

will run in parallel to the course. There will 

be a revision class in the Easter Term. 

Hydrodynamic Stability (M24) 

Colm-cille Caul_eld 

Developing an understanding by which 

\small" perturbations grow, saturate and 

modify uid ows is 

central to addressing many challenges of 

interest in uid mechanics. Furthermore, many 

applied mathematical 

tools of much broader relevance have been 

developed to solve hydrodynamic stability 

problems, 

and hydrodynamic stability theory remains an 

exceptionally active area of research, with 

several exciting 

new developments being reported over the 

last few years. 

In this course, an overview of some of these 

recent developments will be presented. After 

a brief introduction 

to the general concepts of ow instability, 

presenting a range of examples, the major 

content of this 

course will be focussed on the broad class of 

ow instabilities where velocity \shear" and 

uid inertia play 

key dynamical roles. Such ows, typically 

characterised by su_ciently\high" Reynolds 

number Ud=_, 

where U and d are characteristic velocity and 

length scales of the ow, and _ is the 

kinematic viscosity of 



 

 

the uid, are central to modelling ows in the 

environment and industry. They typically 

demonstrate the 

key role played by the redistribution of 

vorticity within the ow, and such vortical ow 

instabilities often 

trigger the complex, yet hugely important 

process of \transition to turbulence". 

A hierarchy of mathematical approaches will 

be discussed to address a range of \stability" 

problems, from 

more traditional concepts of \linear" 

in_nitesimal normal mode perturbation 

energy growth on laminar 

parallel shear ows to transient, inherently 

nonlinear perturbation growth of general 

measures of perturbation 

magnitude over _nite time horizons where 

ow geometry and/or uid properties play a 

dominant 

role. The course will also discuss in detail 

physical interpretations of the various ow 

instabilities considered, 

as well as the industrial and environmental 

application of the results of the presented 

mathematical 

analyses. 
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Pre-requisites 

Undergraduate uid mechanics, linear algebra, 

complex analysis and asymptotic methods. 

 

Literature 
1. F. Charru Hydrodynamic Instabilities CUP 

2011. 

2. P. G. Drazin & W. H. Reid Hydrodynamic 

Stability 2nd edition. CUP 2004. 

3. P. J. Schmid & D. S. Henningson, Stability 

and transition in shear ows. Springer, 2001. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

two-hour revision class in the Easter Term. 

Fluid Dynamics of the Solid Earth (M16) 

Jerome A. Neufeld 

The dynamic evolution of the solid Earth is 

governed by a rich variety of physical 

processes occurring on 

a wide range of length and time scales. The 

Earth's core is formed by the solidi_cation of 

a mixture of 

molten iron and various lighter elements, a 

process which drives predominantly 

compositional convection 

in the liquid outer core, thus producing the 

geodynamo responsible for the Earth's 

magnetic _eld. At very 

much longer time scales, radiogenic heating 

of the solid mantle drives solid-state 

convection resulting in 

plume-like features possibly responsible for 

features such as the Hawaiian sea mounts. 

Nearer the surface, 

convection drives the motion of brittle plates 

which are responsible for the Earth's 

topography as can 

be felt and imaged through the seismic 

record. Upwelling mantle material also drives 

partial melting 

of mantle rocks resulting in compaction, and 

ultimately in the propagation of viscous melt 

through the 

elastic crust. On the Earth's surface, and at 

very much faster rates, the same physical 

processes of viscous 

and elastic deformation coupled to phase 

changes govern the evolution of the Earth's 

cryosphere, from 

the solidi_cation of sea ice to the ow of 

glacial ice. 

This course will use the wealth of 

observations of the solid Earth to motivate 

mathematical models of 

physical processes that play key roles in 

many other environmental and industrial 

processes. Mathematical 

topics will include the onset and scaling of 

convection, the coupling of uid motions with 

changes of phase 



 

 

at a boundary, the thermodynamic and 

mechanical evolution of multicomponent or 

multiphase systems, 

the coupling of uid ow and elastic exure or 

deformation, and the ow of uids through 

porous materials. 

Pre-requisites 

A basic understanding of viscous uid 

dynamics. Mathematical methods, 

particularly the solution of 

ordinary and partial di_erential equations. 

 

Literature 
1. M.G. Worster. Solidi_cation of Fluids. In 

Perspectives in Fluid Dynamics: a Collective 

Introduction 

to Current Research. Edited by G.K. 

Batchelor, H.K. Mo_att and M.G. Worster. 

pp. 393{446. 

CUP (2000) 

2. H.E. Huppert. Geological uid mechanics. 

In Perspectives in Fluid Dynamics: a 

Collective Introduction 

to Current Research. Edited by G.K. 

Batchelor, H.K. Mo_att and M.G. Worster. 

pp. 

393{446. CUP (2000) 

3. D.L. Turcotte, G. Schubert. Geodynamics, 

second edition. CUP (2002) 
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Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a one-hour revision class in the Easter Term. 

Fluid Dynamics of Climate (L24) 

P.F. Linden J.R. Taylor 

Understanding and predicting the Earth's 

climate is one of the great scienti_c 

challenges of our times. 

Fluid motion in the ocean and atmosphere 

plays a vital role in regulating the Earth's 

climate, helping to 

make the planet hospitable for life. However, 

the dynamical complexity of this motion and 

the wide range 

of space and time scales involved, makes 

predicting the climate system a very di_cult 

endeavour. 

This course provides an introduction to the 

basic uid dynamics necessary to build 

mathematical models 

of the environment in which we live, 

focusing on the behaviour large-scale of 

strati_ed and rotating ows. 

The course begins by considering deals with 

ows where the timescale for the motion is not 

short compared 

with a day and the Earth's rotation plays an 

important role. The additional timescale 

introduced by the 

Earth's rotation modi_es the dynamics in a 

profound way for both homogeneous and 

density strati_ed 

ows. The Coriolis force (a _ctitious force 

arising from our use of a frame of reference 

rotating with 

the planet) causes a moving parcel of uid to 

experience a force directed to its right in the 

Northern 

hemisphere (or its left in the Southern 

hemisphere), introducing a rich wealth of 

new dynamics. We 

then examine large-scale dynamics of the 

atmosphere and the oceans including the 

phenomena commonly 

referred to as Rossby waves, eddies, 

baroclinic instability, ocean gyres and the 

thermohaline circulation. 

These processes play a central role in the 

lateral transport of heat and other tracers. 

Pre-requisites 

Undergraduate uid dynamics 

 

Literature 
1. A.E. Gill, Atmosphere-Ocean Dynamics. 

Academic Press (1982). 



 

 

2. Marshall, J. and R.A. Plumb. Atmosphere, 

Ocean, and Climate Dynamics. Academic 

Press. 2008. 

3. Pedlosky, J. Geophysical Fluid Dynamics. 

Springer. (1987). 

4. J.S. Turner, Buoyancy E_ects in Fluids, 

Cambridge University Press (1979). 

Active Biological Fluids (L24) 

Dr Eric Lauga 

Fluid mechanics plays a crucial role in a 

number of biological processes, from the 

largest of animals to 

the smallest of cells. In this course, we will 

give an overview of the hydrodynamic 

phenomena associated 

with biological life at the cellular scale, from 

the uid mechanics of individual 

microorganisms and their 

appendages to the modelling of collective, 

complex, cell dynamics. We will combine 

physical description, 

scaling analysis, and detailed calculations in 

order to present a wide overview of the 

subject, and appeal 

to students in applied mathematics, physics, 

and theoretical biology. The course will 

introduce the uid 

dynamics and soft matter mechanics relevant 

to the locomotion of individual cells. 

Drawing examples 

from a variety of organisms, we will aim at 

providing a precise mathematical description 

of how cells 

actuate and exploit surrounding uids in order 

to self-propel, how they interact with their 

chemical and 

mechanical environment, and how 

populations of cells dynamically inuence 

each other. At the end of 

the course, students will be equipped to carry 

out independent research in biological 

physics and uid 

dynamics relevant to the cellular world. 
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Pre-requisites 

Undergraduate uid dynamics, vector calculus 

and mathematical methods. Attendance to 

Part III \Slow 

Viscous Flows" is required. 

 

Literature 
1. Lighthill (1975) Mathematical 

Biouiddynamics, SIAM. 

2. Purcell (1977) Life at low Reynolds 

number. American Journal of Physics, 45, 3-

11. 

3. Childress (1981) Mechanics of Flying and 

Swimming, Cambridge University Press. 

4. Yates (1986) How microorganisms move 

through water. American Scientist 74, 358-

365. 

5. Vogel (1996) Life in Moving Fluids, 

Princeton University Press. 

6. Berg (2000) Motile Behavior of Bacteria. 

Physics Today, 53, 24. 

7. Bray (2000) Cell Movements, Garland. 

Additional support 

Four examples sheets will be provided and 

four associated examples classes will be 

given. There will be a 

two-hour revision class in the Easter Term. 

Direct and Inverse Scattering of Waves (L16) 

Orsola Rath Spivack 

The study of wave scattering is concerned 

with how the propagation of waves is a_ected 

by objects, 

and has a variety of applications in many 

_elds, from environmental science to 

seismology, medicine, 

telecommunications, materials science, 

military applications, and many others. If we 

know the nature of 

the objects and we want to _nd how an 

incident wave is scattered, we call this a 

`direct scattering problem' 

and practical applications will include for 

example underwater sound propagation, light 

transmission 



 

 

through the atmosphere, or the e_ect of noise 

in built-up areas. If we measure and know the 

scattered 

_eld produced by an incident wave, but we 

do not know the nature of the objects that 

have scattered 

it, we call this an `inverse scattering problem' 

and applications will include for example 

non-destructive 

testing of materials, remote sensing with 

radar or lidar, or medical imaging. 

This course will provide the basic theory of 

wave propagation and scattering and an 

overview of the main 

mathematical methods and approximations, 

with particular emphasis on inhomogeneous 

and random media, 

and on the regularisation of inverse scattering 

problems. Only time-harmonic waves will be 

normally 

considered. 

Topics covered will include: 

1. Boundary value problems and the integral 

form of the wave equation. 

2. The parabolic equation and Born and 

Rytov approximations for the scattering 

problem. 

3. Scattering by randomly rough surfaces and 

propagation in inhomogeneous media. 

4. Ill-posedness of the inverse scattering 

problem, and the Moore-Penrose generalised 

inverse. 

5. Regularisation methods and methods for 

solving some inverse scattering problems. 

6. Time reversal and focusing in 

inhomogeneous media. 

This course sits as a bridge between more 

applied Continuum Mechanics courses on 

waves and uid 

dynamics, and more pure Applied and 

Computational Analysis course. Students 

considering this course 

might also like to consider courses on inverse 

problems and imaging. 
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Pre-requisites 

This course assumes basic knowledge of 

ODEs and PDEs, and of Fourier transforms. 

Some familiarity 

with linear algebra and with basic concepts in 

functional analysis is helpful, though by no 

means necessary. 

Preliminary Reading 

1. C.W. Groetsch, Inverse Problems in the 

Mathematical Sciences. Braunschweig 1993 

2. L.D. Landau and E.M. Lifschitz, Fluid 

Dynamics. Pergamon [Chapter 8] 

 

Literature 
1. D. Colton and R. Kress, Inverse Acoustic 

and Electromagnetic Scattering Theory. 

Springer, 1992. 

2. D.G. Crighton et al, Modern Methods in 

Analytical Acoustics. Springer, 1992. 

3. H.W. Engl, M. Hanke and A. Neubauer, 

Regularization of inverse problems. Kluwer, 

2000. 

4. A. Ishimaru, Wave Propagation and 

Scattering in Random Media. Academic 

Press, 1978. 

5. A. Kirsch, An introduction to the 

mathematical theory of inverse problems. 

Springer, 1996. 

6. B. Uscinski, The elements of wave 

propagation in random media. McGraw-Hill, 

1977. 

Additional support 

Three examples sheets will be provided and 

three associated examples classes will be 

given. There will be 

a two-hour revision class in the Easter Term. 

The course will be supported by a Moodle 

site. 

Perturbation Methods (L16) 

S.S. Pegler & S.J. Cowley 

This course will deal with the asymptotic 

solution to problems in applied mathematics 

in general when 



 

 

some parameter or coordinate in the problem 

assumes large or small values. Many 

problems of physical 

interest are covered by such asymptotic 

limits. The methods developed have 

signi_cance, not only in 

revealing the underlying structure of the 

solution, but in many cases providing 

accurate predictions when 

the parameter or coordinate has only 

moderately large or small values. 

A number of some of the most useful 

mathematical tools for _nding approximate 

solutions to equations 

will be covered, and a range of physical 

applications will be provided. Speci_cally, 

the course will start 

with a brief review of classical asymptotic 

methods for the evaluation of integrals, but 

most of the lectures 

will be devoted to singular perturbation 

problems (including the methods of multiple 

scales and matched 

asymptotic expansions, and so-called 

`exponential asymptotics'), for which 

straightforward asymptotic 

methods fail in one of a number of 

characteristic ways. 

More details of the material are as follows, 

with approximate numbers of lectures in 

brackets: 

_ Methods for Approximating Integrals. This 

section will start with a brief review of 

asymptotic 

series. This will be followed by various 

methods for approximating integrals 

including the `divide & 

conquer' strategy, Laplace's method, 

stationary phase and steepest descents. This 

will be followed 

by a discussion of Stokes lines and an 

introduction to `asymptotics beyond all 

orders' in which 

exponentially small corrections are extracted 

from the tails of asymptotic series. [6] 
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_ Multiple Scales. This method is generally 

used to study problems in which small e_ects 

accumulate 

over large times or distances to produce 

signi_cant changes (the `WKBJLG' method 

can be viewed 

as a special case). It is a systematic method, 

capable of extension in many ways, and 

includes such 

ideas as those of `averaging' and `time scale 

distortion' in a natural way. A number of 

applications 

will be studied including ray tracing and 

turning points (e.g. sound or light 

propagation in an 

inhomogeneous medium). [4] 

_ Matched Asymptotic Expansions. This 

method is applicable, broadly speaking, to 

problems in which 

regions of rapid variation occur, and where 

there is a drastic change in the structure of 

the problem 

when the limiting operation is performed. 

Boundary-layer theory in uid mechanics was 

the subject 

in which the method was _rst developed, but 

it has since been greatly extended and applied 

to many 

_elds. Further examples will be given of 

asymptotics beyond all orders. This section 

will include 

a brief introduction to the summation of 

[divergent] series, e.g. covering Ces_aro, 

Euler and Borel 

sums, Pad_e approximants, continued 

fractions, Shanks' transformations, 

Richardson extrapolation, 

and Domb-Sykes plots. [6] 

Pre-requisites 

Although many of the techniques and ideas 

originate from uid mechanics and classical 

wave theory, no 



 

 

speci_c knowledge of these _elds will be 

assumed. The only pre-requisites are 

familiarity with techniques 

from the theory of complex variables, such as 

residue calculus and Fourier transforms, and 

an ability to 

solve straightforward di_erential equations 

and partial di_erential equations and evaluate 

simple integrals. 

 

Literature 
Introductory Reading 

1. Bender, C.M. & Orszag, S., Advanced 

Mathematical Methods for Scientists and 

Engineers, McGraw- 

Hill (1978). This is probably the most 

comprehensive textbook, but that means that 

some selective 

reading is advisable. Note that Bender & 

Orszag refer to Stokes lines as anti-Stokes 

lines, and vice 

versa. 

2. Hinch, E.J., Perturbation Methods, 

Cambridge University Press (1991). This is 

the book of the 

course; some view it as somewhat terse. 

3. Van Dyke, M.D., Perturbation Methods in 

Fluid Mechanics, Parabolic Press, Stanford 

(1975). This 

is the original book on perturbation methods; 

somewhat dated, but still a useful read. 

Reading to Complement Course Material 

1. Berry, M.V., Waves near Stokes lines, 

Proc. R. Soc. Lond. A, 427, 265{280 (1990). 

2. Boyd, J.P., The Devil's invention: 

asymptotic, superasymptotic and 

hyperasymptotic series, Acta 

Applicandae, 56, 1-98 (1999). Also available 

at 

http://hdl.handle.net/2027.42/41670 and 

http://link.springer.com/content/pdf/10.1023/

A:1006145903624.pdf 

3. Kevorkian, J. & Cole, J.D., Perturbation 

Methods in Applied Mathematics, Springer 

(1981). 

Additional support 

In addition to the lectures, three examples 

sheets will be provided and three associated 

2-hour examples 

classes will run in parallel to the course. 

There will be a 2-hour revision class in the 

Easter Term. 
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Biological Physics (M24) 

Non-Examinable (Part III Level) 

Dr Pietro Cicuta, Dr Eileen Nugent 

This course explores the physical principles 

of life at the cellular and molecular level. It 

examines how 

these principles shape the behaviour of cells 

enabling them to sense and react to their 

environment as 

they grow and divide. The course aims to 

demonstrate how apparently diverse aspects 

of living systems 

are actually underpinned by the physics of 

complex systems. Modelling based on 

physical principles 

complements the experimental investigations 

of biologists and can help reveal the essential 

principles of 

life. 

The course begins with an overview of 

quantitative cell biology including primer 

lectures on cell biology 

for physics students. This is followed by an 

examination of life from a physicist's 

perspective and an 

introduction to the thermal and statistical 

physics of living systems with examples 

ranging from ion 

channel gating to cooperative binding. 

The next part of the course looks at how 

statistical mechanics can be used to study 

gene regulation 

focussing on how cells make transcriptional 

decisions, genetic switches and oscillating 

genetic networks. 

We introduce the basic framework of 

dynamical systems. 



 

 

We then turn to the study of the cell as a 

crowded and disordered environment and 

building on both stat 

mech and soft matter concepts we explore the 

e_ects of this environment on physical 

models of cellular 

processes. This leads on to lectures on the 

cytoskeletal assembly and molecular motors 

with an emphasis 

on statistical approaches to modeling 

dynamical processes within cells. 

The _nal part of the course includes lectures 

on neural transport including biophysical 

models of vision, 

hearing and information processing in neural 

networks. 

The course includes guest lectures on 

genetic/proteomic networks and an outlook 

on the most active 

research areas of biological physics. 

Pre-requisites 

A working knowledge of Part II Thermal and 

Statistical Physics is required, and familiarity 

with Part II 

Soft Condensed Matter is bene_cial. 

 

Literature 
1. Physical Biology of the cell (2nd Edition), 

Phillips, Kondev, Theriot Garcia 

2. Biological Physics, Freeman Press, Philip 

Nelson 

3. Physical Models of Living Systems, 

Freeman Press, Philip Nelson 

4. Models of Life, CUP (available online 

through http://www.lib.cam.ac.uk/), Sneppen 

5. An Introduction to Systems Biology, 

Chapman and Hall, Alon 

6. Molecular Biology of the Cell, Garland 

Science, Alberts et al (cell biology reference 

textbook) 

Demonstrations in Fluid Mechanics. (L8) 

Non-Examinable (Part III Level) 

Dr. S.B. Dalziel, Dr. J.A. Neufeld 

While the equations governing most uid ows 

are well known, they are often very di_cult to 

solve. To 

make progress it is therefore necessary to 

introduce various simpli_cations and 

assumptions about the 
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nature of the ow and thus derive a simpler set 

of equations. For this process to be 

meaningful, it is 

essential that the relevant physics of the ow is 

maintained in the simpli_ed equations. 

Deriving such 

equations requires a combination of 

mathematical analysis and physical insight. 

Laboratory experiments 

play a role in providing physical insight into 

the ow and in providing both qualitative and 

quantitative 

data against which theoretical and numerical 

models may be tested. 

The purpose of this demonstration course is 

to help develop an intuitive `feeling' for uid 

ows, how they 

relate to simpli_ed mathematical models, and 

how they may best be used to increase our 

understanding 

of a ow. Limitations of experimental data 

will also be encountered and discussed. 

The demonstrations will include a range of 

ows currently being studied in a range of 

research projects 

in addition to classical experiments 

illustrating some of the ows studied in 

lectures. The demonstrations 

are likely to include 

_ instability of jets, shear layers and 

boundary layers; 

_ gravity waves, capillary waves internal 

waves and inertial waves; 

_ thermal convection, double-di_usive 

convection, thermals and plumes; 

_ gravity currents, intrusions and hydraulic 

ows; 

_ vortices, vortex rings and turbulence; 



 

 

_ bubbles, droplets and multiphase ows; 

_ sedimentation and resuspension; 

_ avalanches and granular ows; 

_ porous media and carbon sequestration; 

_ ventilation and industrial ows; 

_ rotationally dominated ows; 

_ non-Newtonian and low Reynolds' number 

ows; 

_ image processing techniques and methods 

of ow visualisation. 

It should be noted that students attending this 

course are not required to undertake 

laboratory work on 

their own account. 

Pre-requisites 

Undergraduate Fluid Dynamics. 

 

Literature 
1. M. Van Dyke. An Album of Fluid Motion. 

Parabolic Press. 

2. G. M. Homsy, H. Aref, K. S. Breuer, S. 

Hochgreb, J. R. Kose_, B. R. Munson, K. G. 

Powell, C. R. 

Robertson, S. T. Thoroddsen. Multimedia 

Fluid Mechanics (Multilingual Version CD-

ROM). CUP. 

3. M. Samimy, K. Breuer, P. Steen, & L. G. 

Leal. A Gallery of Fluid Motion. CUP. 
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